патофизиология

ГЛАВА 1. ВВЕДЕНИЕ В ПРЕДМЕТ

Термин «патофизиология» («патологическая физиология») и основы дисциплины сформировались в конце XVIII века. Патофизиология изучает сущность, природу болезней. Именно это и отражено в этимологии термина «патофизиология» (греч. pathos – страдание, болезнь; physis – природа, сущность;logos – учение).

Предмет патофизиологии

Патофизиология изучает: ❖ типовые патологические процессы;

❖ типовые формы патологии тканей, органов и их систем; ❖ синдромы, болезни и болезненные состояния.

•  Типовые патологические процессы – компоненты различных болезней. Так, «воспаление» – компонент менингита, пневмонии, гастрита, панариция, гепатита, дерматита и др. Характерные признакитипового патологического процесса: полиэтиологичность, монопатогеничность, комплексность и стандартность проявлений.

♦ Полиэтиологичность. Существует множество причин, вызывающих конкретный типовой патологический процесс. Например, причинами воспаления могут быть микроорганизмы, механическая травма, воздействие тепла или холода, различных химических веществ и многие другие.

♦ Монопатогенетичность. Типовой патологический процесс имеет более или менее стандартный (стереотипный) механизм развития. Например, патогенез воспаления включает компоненты альтерации (повреждения), экссудации и пролиферации.

♦ Комплексность. Любой типовой патологический процесс всегда является комплексом адаптивных и патологических изменений.

♦ Стандартность проявлений. Типовой патологический процесс имеет характерные (стандартные) проявления. Так, любое острое воспаление характеризуется как общими (лейкоцитоз, лихорадка, диспротеинемия), так и местными (боль, краснота, отёк ткани, повышение её температуры и расстройство функции) признаками.

•  Типовые формы патологии. Совокупность патологических процессов, характерных для патологии отдельных тканей и органов – типовая форма патологии ткани или органа. Например, анемию как типовую форму патологии системы эритроцитов могут вызвать различные причины, но все анемии проявляются уменьшением содержания гемоглобина (Hb) в единице объёма крови. Как и типовые патологические процессы, типовые формы патологии имеют те же характерные признаки (полиэтиологичность, монопатогенетичность, комплексность, стандартность проявлений).

•  Синдромы, болезни и болезненные состояния. Совокупность типовых патологических процессов и типовых форм патологии, развивающихся при конкретном повреждении в организме, характеризуют синдром, болезнь или болезненное состояние.

Задачи патофизиологии

Болезни, синдромы, типовые патологические процессы и типовые формы патологии рассматриваются в патофизиологии с позиций этиологии и патогенеза, проявлений и механизмов развития, принципов их диагностики, лечения и профилактики.

•  Этиология – учение о причинах и условиях возникновения болезней, болезненных состояний и патологических процессов. Знание этих факторов позволяет ответить на вопрос «почему возникает?»болезнь или патологический процесс.

•  Патогенез – учение о механизмах развития болезней и патологических процессов и механизмы их проявлений. Это даёт возможность ответить на вопрос «как развивается?» болезнь или патологический процесс.

•  Диагностика – совокупность принципов и методов выявления болезней и патологических процессов.

•  Лечение и профилактика. Патофизиология формулирует и аргументирует принципы и методы лечения, а также профилактики болезней и патологических процессов, т.е. отвечает на вопрос «как лечить и предупредить?» болезнь.

Методы патофизиологии

Патофизиология применяет ряд методов: моделирование, теоретический анализ и клинические исследования. Основным из них является моделирование.

•  Моделирование заключается в воспроизведении отдельных болезней, патологических процессов или реакций, методов диагностики, лечения и профилактики, а также пациента в целом на «искусственных копиях» (моделях) с целью изучения механизмов возникновения, развития и завершения болезней. Возможно моделирование на физических объектах и моделирование формализованное.

 Моделирование на физических объектах (материальное), т.е. на животных, их органах, тканях, клетках и отдельных компонентах клеток.

 Моделирование формализованное (нематериальное): логическое, интеллектуальное, математическое и компьютерное.

•  Теоретический анализ и разработка на этой основе концепций, гипотез и теорий обеспечивает развитие фундаментальной и прикладной медицины.

•  Методы клинического исследования позволяют проводить целенаправленное изучение функционирования различных органов и их систем, жизнедеятельности организма пациента в целом.

Врачебное мышление. Патофизиология (наряду с другими фундаментальными медицинскими специальностями) – интеллектуальная база медицины и основа решения её актуальных проблем.Формирование у студентов основ врачебного мышления – важнейшая задача патофизиологии. Достигается эта задача в ходе патофизиологического анализа конкретных экспериментальных или клинических данных при решении профессиональных задач врача на занятиях. Это имитирует поведение врача, моделирующего болезнь и пациента в целом, формулирующего методы диагностики болезни и составляющего схемы лечения пациента.

Разделы патофизиологии. Патофизиология включает три основных раздела: общую нозологию(учение о болезни), учение о типовых патологических процессах и учение о типовых формах патологии тканей, органов и их систем. Общую нозологию и учение о типовых патологических процессах изучает «общая патофизиология» (главы 1-20), а учение о типовых формах патологии и отдельных нозологических формах – «частная патофизиология» (главы 21-28).

ГЛАВА 2. ОБЩАЯ НОЗОЛОГИЯ

Общая нозология формулирует общие представления о болезни, основанные на знании закономерностей возникновения, развития и завершения конкретных болезней и болезненных состояний – нозологических единиц.

Нозологическая единица. Отдельные болезни обозначают как нозологические формы, или нозологические единицы (от греч. nosos – болезнь). К ним, например, относятся гипертоническая болезнь, пневмония, пиелонефрит, гемолитическая анемия, язвенная болезнь желудка, бронхиальная астма. Нозологические единицы включены в Международную Классификацию Болезней (МКБ). В настоящее время действует МКБ десятого пересмотра (МКБ-10). Согласно МКБ-10, каждой нозологической единице присвоен уникальный код: например, I10 – эссенциальная (первичная) гипертензия; I11 – гипертензивная болезнь сердца [гипертоническая болезнь с преимущественным поражением сердца]; I12 – гипертензивная [гипертоническая] болезнь с преимущественным поражением почек; I13 – гипертензивная [ги- пертоническая] болезнь с преимущественным поражением сердца и почек; I15 – вторичная гипертензия. Коды МКБ-10 обязательны к применению в отчётных медицинских документах (полный текст МКБ-10 приведён на прилагаемом диске). Общая нозология включает 3 концепции (учения).

•  Собственно нозология (греч. nosos – болезнь, logos – учение) – учение о болезни.

•  Общая этиология (греч. aithia – причина, logos – учение) – учение о причинах и условиях возникновения болезней, синдромов, болезненных состояний и патологических процессов, а также о принципах и методах их этиотропного лечения и профилактики.

•  Общий патогенез (греч. pathos – страдание, genesis – происхождение) – учение о механизмах развития и завершения болезней, синдромов, болезненных состояний и патологических процессов, а также о принципах и методах их патогенетической терапии и профилактики.

Нозология

Задачи нозологии. Собственно нозология (учение о болезни) разрабатывает: ❖ понятия патологии; ❖ положения общего учения о болезни;

•  номенклатуру болезней; ❖ классификацию болезней; ❖ теоретические положения медицины.

Основные понятия. К основным понятиям нозологии относятся здоровье, норма, предболезнь, болезнь, патологический процесс, патологическая реакция, патологическое состояние, синдром и симптом.

Здоровье и норма

Представление о болезни тесно связано с понятием «здоровье». Оба явления – и здоровье, и болезнь – две взаимосвязанные формы жизнедеятельности организма.

•  Здоровье. Общепринятого понятия «здоровье» в настоящее время нет.

♦ Чаще здоровье определяют как состояние оптимальной адаптированности человека к меняющимся условиям жизнедеятельности.

♦ Определение, данное экспертами ВОЗ: Здоровье – состояние полного физического, духовного и социального благополучия, а не только отсутствие болезней или физических дефектов.

•  Норма. При установлении факта состояния здоровья или болезни нередко прибегают к понятию «норма» – состояние оптимальной жизнедеятельности организма в конкретных условиях его существования. Понятие «норма» часто используют как синоним здоровья («здоровье – нормальное состояние организма»). Однако, понятие «норма» шире понятия «здоровье». Так, можно быть здоровым человеком, но отличаться от каких-либо общепринятых эталонов нормы (например, ростом, массой или габаритами тела, характером общения с другими людьми, уровнем интеллекта).

Предболезнь. Возникновению болезни нередко предшествует состояние предболезни (преморбидное, ситуация: «ни болезнь, ни здоровье»). Это состояние характеризуется перенапряжением адаптивных – саногенетических (греч. sanus – здоровый) – механизмов в связи с действием повреждающих факторов или проявлением дефектов генетической программы. На фоне такого состояния воздействие непатогенного в других условиях агента может вызвать болезнь. Состояние предболезни не имеет специфических признаков, но его могут выявить нагрузочные пробы, позволяющие обнаружить критическое снижение эффективности адаптивных механизмов.

Болезнь

В медицине понятие «болезнь» (лат. morbus, греч. nosos) обычно применяют в двух значениях – узком и более общем:

♦ в узком смысле – для обозначения конкретного заболевания (например, пневмонии, гастрита, гипертонической болезни);

♦ в общем смысле – для описания состояния, качественно отличающегося от здоровья, т.е. болезнь как своеобразная форма жизнедеятельности организма, особое биологическое явление.

Общепринятой дефиниции понятия «болезнь» (как особого состояния организма) нет. Оптимальным является следующее определение:

Болезнь – нарушение нормальной жизнедеятельности организма, возникающее вследствие генетического дефекта или действия на организм повреждающего фактора. Болезнь характеризуется развитием закономерного динамического комплекса взаимосвязанных патогенных и адаптивных изменений, а также ограничением диапазона биологических и социальных возможностей индивида. Стадии болезни.Выделяют следующие стадии (периоды) болезни: скрытую (латентную, инкубационную), продромальную (предвестников), выраженных проявлений (разгара) и исходов.

•  Латентная стадия болезни – период от момента воздействия патогенного агента до первых признаков болезни. Характеризуется нарастающим снижением эффективности адаптивных механизмов.

•  Стадия предвестников – результат недостаточности адаптивных процессов – наблюдается от момента первых проявлений заболевания до развития типичной клинической картины. На продромальной стадии выявляют неспецифические (как субъективные, так и объективные) признаки болезни: недомогание, быстрая утомляемость, раздражительность, боли в мышцах, снижение аппетита, головная боль, ощущение дискомфорта.

•  Стадия выраженных проявлений болезни (разгара) характеризуется появлением типичных для конкретной болезни местных и общих симптомов (развёрнутая клиническая картина заболевания).

•  Стадия исходов болезни. Возможно несколько исходов болезни: выздоровление, рецидив, ремиссия, осложнение, переход в хроническую форму, смерть.

Длительность болезни. По продолжительности выделяют следующие формы болезни:

♦ молниеносные (от нескольких минут до нескольких часов);

♦ острейшие (от нескольких часов до 3-4 сут);

♦ острые (от 5 до 14 сут);

♦ подострые (от 15 до 35-40 сут);

♦ хронические (несколько месяцев и лет). Выздоровление возможно полное и неполное.

•  Выздоровление полное. В основе выздоровления лежит потенцирование саногенетических механизмов, формирование эффективных

адаптивных реакций, которые могут ликвидировать или нейтрализовать причину болезни и её последствия, восстановить гомеостаз организма. Полное выздоровление, однако, не означает возврата организма к его состоянию до болезни. Выздоровевший после болезни организм характеризуется качественно (и часто количественно) иными показателями жизнедеятельности.

•  Выздоровление неполное характеризуется сохранением в организме остаточных явлений болезни.

Рецидив – повторное развитие или повторное усиление (усугубление) симптомов болезни после их устранения или ослабления. Ремиссия – временное уменьшение (неполная ремиссия) или устранение(полная ремиссия) проявлений болезни. При некоторых болезнях ремиссия является их закономерным этапом (например, при малярии или возвратном тифе), сменяющимся рецидивом. Осложнения – патологические процессы, состояния или реакции, развивающиеся на фоне основной болезни, но не обязательные для неё. Осложнения в большинстве случаев являются результатом опосредованного действия причины болезни либо её патогенетических звеньев (например, гипертонический криз при гипертонической болезни; ангиопатии при сахарном диабете – СД).

Смерть

Смерть – процесс прекращения жизнедеятельности организма. Смерти предшествует период умирания (преагония – терминальная пауза – агония – клиническая смерть – биологическая смерть). Первые четыре этапа (терминальные состояния) обратимы, биологическая смерть – нет.

•  Клиническая смерть – обратимое терминальное состояние – характеризуется прекращением дыхания, сердцебиения и кровообращения. Этот период длится обычно 3-6 мин, при искусственной (медицинской) гипотермии – до 15-25 мин. Основной фактор, определяющий длительность периода клинической смерти – степень кислородного голодания (гипоксии) коры головного мозга.

 Реанимационные мероприятия. На этапе клинической смерти необходимо проведение реанимационных мероприятий – искусственного дыхания и массажа сердца, а при неэффективности – искусственной вентиляции лёгких (ИВЛ) и дефибрилляции. Без реанимационных мероприятий через 3-6 мин после прекращения сокращений сердца происходит гибель коры большого мозга (декортикация).

 Смерть мозга – необратимое повреждение головного мозга, которое может развиться даже при сохранённой деятельности сердца и газообмене.

• Биологическая смерть – необратимое прекращение жизнедеятельности организма – исключает оживление организма как целостной системы, хотя существует возможность возобновить функцию отдельных органов (например, при их трансплантации в другой организм).

Патологический процесс, патологическая реакция, патологическое состояние, симптом, синдром

Патологическая реакция – качественно или количественно неадекватный и биологически нецелесообразный (неадаптивный) ответ организма или его части (ткани, органа, системы) на действие обычных или патогенных агентов. Как правило, патологическая реакция – результат нарушения реактивности организма в целом или реактивных свойств тканей, органов и их систем. Примером могут служить аллергические реакции, фобии (немотивированный страх какого-либо предмета или явления), патологические рефлексы (например, спазм коронарных артерий с развитием приступа стенокардии при раздражении стенки жёлчного пузыря конкрементом).

Патологический процесс – комплекс патогенных и адаптивных реакций в органе, ткани или организме, а также структурных изменений, связанных с ними.

♦ Известно определённое количество патологических процессов (например, воспаление, лихорадка, гипоксия, опухолевый рост, инфекционный процесс, иммунопатологические состояния, экстремальные состояния), которые обозначают как типовые (типические, стандартные) патологические процессы, или типовые реактивные процессы (поскольку они развиваются в качестве реакции на повреждение), или как типовые адаптивные процессы (поскольку при их развитии, как правило, доминируют адаптивные реакции).

♦ Патологический процесс (в отличие от болезни) обычно локален. В связи с этим он может оказывать менее выраженное влияние на организм (например, травма мягких тканей, ожог сравнительно небольшого участка кожи, эрозия желудка). Однако с увеличением масштаба и степени повреждения патологический процесс может привести к болезни (например, посттравматической или ожоговой, язвенной болезни желудка).

Патологическое состояние – длительное отклонение от нормы свойств тканей, органов и их систем, что характеризуется, как правило, нарушением жизнедеятельности организма.

♦ Отличительная черта патологического состояния – затяжное (иногда в течение всей жизни) течение. Примеры: деформации

клапанных отверстий сердца после перенесённого эндокардита; состояния после удаления одного из глазных яблок, зуба, почки, части кишечника, лёгкого; различные уродства и последствия аномалий развития (например, расщелина губы или твёрдого нёба, косолапость).

♦ Патологические состояния могут служить фактором риска развития патологических процессов и болезней. Например, сужение клапанного отверстия сердца может привести к развитию сердечной недостаточности; отсутствие зубов – к гастриту; лёгкого или почки – к дыхательной или почечной недостаточности.

Симптом (лат. symptomum, symptoma; греч. symptoma – совпадение, признак) – признак болезни, патологического процесса, состояния, реакции или синдрома.

Синдром (лат. syndromum; греч. syndrome – стечение признаков болезни, от syndromes – вместе бегущий; синоним – симптомокомплекс) – совокупность симптомов, объединённых единым патогенезом. Иногда этим термином обозначают самостоятельные нозологические единицы или стадии (формы) какой-либо болезни.

Номенклатура и классификация болезней

Номенклатура болезней – организованный в определённом порядке перечень названий и описание отдельных болезней. Классификация болезней – система распределения болезней по классам на основе определённых критериев. Так, в Международной Классификации Болезней (МКБ) применены следующие критерии:

♦ причина (наследственные, инфекционные, постинтоксикационные болезни);

♦ главное звено патогенеза (дистрофия, артериальная гипертензия, иммунопатологическое состояние, эндокринопатия);

♦ основная локализация болезни (болезни системы крови, органов дыхания, сердца, глаз, почек, кожи, печени);

♦ возраст пациента (болезни новорождённых, детские болезни, болезни пожилого и старческого возраста);

♦ основной принцип лечения (хирургические, терапевтические болезни).

Общая этиология

Термин «этиология» (греч. aithia – причина, logos – учение) применяют двояко – для обозначения: ❖ общего учения о причинах и условиях возникновения болезней, ❖ совокупности причин и условий возникновения конкретной болезни.

Ключевые понятия учения об этиологии – повреждающий фактор, условия возникновения болезней, реактивность организма и этиотропная терапия.

Повреждающие факторы. Причины болезней и патологических процессов – повреждающие факторы. Свойства повреждающих факторов рассматриваются в разделах «Общая патофизиология» и «Частная патофизиология». Патогенный фактор – необходимое, но не всегда достаточное условие возникновения болезни. Значительную роль играют условия, при которых реализуется действие этого фактора.

Условия развития болезней

В отличие от абсолютно необходимой для возникновения болезней причины, условия, при которых развивается болезнь, имеют относительное значение.

Условия развития болезни – факторы, которые способствуют, препятствуют или модифицируют действие причинного агента и придают болезни специфические черты.

•  Роль условий при возникновении болезней и патологических процессов может варьировать от решающей до незначительной.

♦ Эффективность систем репарации ДНК играет решающую роль в предупреждении трансформации нормальной клетки в опухолевую. При низкой их эффективности возможно развитие опухолевого роста.

♦ При воздействии мощных экстремальных факторов (например, чрезвычайно низкой или высокой температуры) условия играют незначительную роль.

•  Различные условия могут либо способствовать реализации причины болезни, либо препятствовать её развитию.

♦ Условия, способствующие развитию болезни (факторы риска): например, низкая активность иммунитета (иммунодефицит) увеличивает частоту инфекционных болезней; высокая влажность воздуха потенцирует воздействие низкой температуры и развитие охлаждения.

♦ Условия, снижающие вероятность развития болезни: например, полноценное питание препятствует развитию ряда болезней желудочно-кишечного тракта (ЖКТ); высокая фагоцитарная активность лейкоцитов предупреждает возникновение некоторых инфекций.

•  Условия могут существенно модифицировать действие причинного фактора.

Например: повторное воздействие на организм чужеродного антигена (Аг) в условиях предварительной сенсибилизации этим

Аг (т.е. повышения специфической чувствительности организма к данному Аг) обычно приводит к развитию аллергической реакции. С другой стороны, повторное попадание того же Аг в иммунизированный им организм сопровождается быстрой фиксацией, инактивацией и, как правило, уничтожением носителя антигенной структуры.

•  Условия возникновения болезни подразделяют на внешние (экзогенные) и внутренние (эндогенные).

♦ К наиболее значимым внешним условиям относят: ❖ экологические факторы (например, загрязнённый воздух, вода, воздействие на организм вредных промышленных, сельскохозяйственных и бытовых факторов); ❖ количественную и качественную неполноценность пищи; ❖ нарушение упорядоченности и оптимального соотношения труда и отдыха; ❖ социально-психогенные факторы (например, частые конфликтные ситуации).

♦ Существенную роль играют внутренние условия: ❖ резистентность (сопротивляемость) организма; ❖ особенности его конституции;

❖ тип высшей нервной деятельности (ВНД); ❖ пол и возраст;

❖ реактивность организма.

Реактивность организма

Возможность возникновения, особенности развития и исходы болезней определяются, с одной стороны, свойствами патогенного агента, с другой – свойствами организма, прежде всего его реактивностью.

Реактивность – свойство целостного организма дифференцированно реагировать изменением жизнедеятельности на воздействие факторов внешней и внутренней среды.

Реактивность определяется многими факторами и проявляется разнообразными формами изменений жизнедеятельности индивида. В связи с этим различают несколько категорий реактивности.

•  Выделяют видовую, групповую и индивидуальную реактивность.

♦ Видовая реактивность детерминируется видовыми особенностями (например, атеросклероз часто наблюдается у людей, но не у кроликов; у кроликов не развивается сифилис при инфицировании их возбудителем болезни, в отличие от человека).

♦ Групповая реактивность свойственна отдельным группам людей. Выделяют реактивность возрастную, половую и конституциональную.

❖ Возрастная: например, дети (в связи с несовершенством их иммунной системы) чаще взрослых подвержены инфекционным заболеваниям.

 Половая: разная устойчивость мужчин и женщин к кровопотере (у женщин она выше), физической нагрузке (выше у мужчин).

 Конституциональная: астеники (в отличие от нормостеников) менее устойчивы к сильным и длительным физическим и психическим нагрузкам.

 Индивидуальная реактивность присуща отдельным людям.

•  Степень дифференцированности ответа организма позволяет выделить реактивность специфическую и неспецифическую.

 Специфическая реактивность: например, развитие иммунного ответа на антигенное воздействие.

 Неспецифическая реактивность: например, активация фагоцитарной реакции лейкоцитов при их контакте с чужеродными клетками, неорганическими частицами, бактериями, вирусами, паразитами.

•  Выраженность ответа организма на воздействие проявляется в виде нормергической, гиперергической, гипоергической и анергической реакции.

 Нормергическая: количественно и качественно адекватная реакция на воздействие агента.

 Гиперергическая: чрезмерная реакция на раздражитель (например, развитие анафилактического шока на повторное попадание в кровь Аг).

 Гипоергическая: неадекватно слабая реакция на воздействие (например, неэффективный иммунный ответ на чужеродный Аг на фоне иммунодефицита).

 Анергия: отсутствие реакции на воздействие.

•  В зависимости от природы агента, вызывающего ответ организма, различают иммуногенную и неиммуногенную реактивность.

 Неиммуногенная реактивность: изменения жизнедеятельности организма, вызванные воздействием различных агентов психического, физического, химического или биологического характера, не обладающих антигенными свойствами.

 Иммуногенная реактивность: изменения жизнедеятельности организма, обусловленные антигенными факторами.

•  Биологическая значимость ответа организма проявляется физиологической или патологической реактивностью.

 Физиологическая реактивность характеризуется адекватным характеру и интенсивности воздействия ответом, который имеет адаптивное значение для организма. Пример: разновидность иммуногенной реактивности – иммунитет.

 Патологическая реактивность проявляется неадекватными по выраженности или характеру изменениями жизнедеятельности организма, сопровождающимися снижением его адаптивных

возможностей. Пример: аллергическая реакция на какой-либо продукт питания или пыльцу растения.

Принципы этиотропной терапии и профилактики

Этиотропная терапия и профилактика болезней преследуют две главные цели:

•  Выявление причины и условий болезни, патологического процесса, реакции или состояния и проведение мероприятий, направленных на предотвращение их патогенного воздействия на организм(профилактические мероприятия).

•  Если причинный агент уже воздействует на организм, то принимают меры по прекращению либо по уменьшению интенсивности и длительности его действия (лечебные мероприятия).

Общий патогенез

Термином «общий патогенез» обозначают раздел общей нозологии, посвящённый разработке представлений об общих закономерностях возникновения, развития и исходов болезней, патологических процессов, состояний и реакций (включая механизмы выздоровления и умирания), а также – формулированию и обоснованию принципов и методов их патогенетического лечения.

Термин «патогенез» («частный патогенез») применяют для обозначения механизма развития конкретной болезни (нозологической формы).

Патогенез – комплекс взаимосвязанных процессов повреждения и адаптации организма, лежащих в основе возникновения, развития и исходов болезней и патологических процессов.

•  Наличие этиологических факторов. Присутствие или отсутствие этиологических факторов при уже возникшей болезни определяет особенности её развития.

♦ При одних болезнях патогенные факторы действует по принципу «включателя» – запускает инициальное звено патогенеза. В дальнейшем формируется более или менее разветвлённая цепь причинно-следственно связанных процессов, которая уже не нуждается в наличии причины болезни. Примеры: опухоли, лучевая болезнь, инфаркт миокарда, ожог, отморожения.

♦ При других болезнях их причина постоянно присутствует в организме. Примеры: СД, гипертиреоз, многие инфекции.

•  Порочный круг. Для патогенеза ряда болезней характерно формирование порочных кругов (лат.circulus vitiosus), когда одно из звеньев патогенеза является причиной расстройств, поддерживающих или потенцирующих реализацию другого звена.

Например, при тепловом ударе повышение температуры тела увеличивает нервно-мышечную возбудимость, что приводит к развитию судорог и усилению сократительного термогенеза. Последний потенцирует дальнейшее повышение температуры и увеличивает возбудимость нервных центров и мышц.

•  Пусковой механизм – стартовый (инициальный) механизм патогенеза. Этот механизм во многом определяет специфику болезни.

•  Основное звено. Патогенез болезней имеет основное (главное, ведущее, ключевое, организующее) звено или несколько основных звеньев, при ликвидации которых распадается вся цепочка патологических процессов.

При заболеваниях воспалительного характера основное звено – образование и эффекты медиаторов воспаления; при аллергических болезнях – образование и эффекты аллергических АТ, сенсибилизированных лимфоцитов и медиаторов аллергии. Выявление ключевого звена патогенеза лежит в основе проведения эффективной патогенетической терапии болезней, патологических процессов, состояний и реакций.

•  Цепной процесс. Патогенетический фактор запускает более или менее разветвлённую цепь других процессов – вторичных, третичных и последующих патогенных изменений.

При СД ведущий патогенетический фактор – гипоинсулинизм (недостаточность инсулина или его эффектов) – обусловливает нарушение транспорта глюкозы в клетки, что приводит к расстройствам энергетического обеспечения, трансмембранного переноса ионов, метаболитов. Указанные изменения, в свою очередь, вызывают нарушение функции органов, тканей и их систем.

•  Специфические и неспецифические звенья патогенеза

 Специфическое звено определяет своеобразие течения патологических процессов. Так, для различных наследуемых анемий характерно наличие специфических дефектов Hb: при талассемиях – несбалансированный синтез одной из цепей глобина, при серповидно-клеточной анемии в молекуле глобина остаток глутамина в 6-м положении от N-конца α-цепи заменён на валин.

 Неспецифические звенья выявляются при различных патологических процессах. Для всех анемий, например, характерно наличие неспецифических, но значимых для их развития механизмов: гипоксии, ацидоза, дисбаланса ионов и воды и др.

 Комбинация различной степени выраженности специфических и неспецифических патогенетических звеньев болезней определяет характерную клиническую картину каждой из анемий.

•  Местные и системные компоненты патогенеза. Патогенез болезней включает комплекс взаимосвязанных местных и общих (системных)

звеньев. Значимость этих патогенетических звеньев различна и нередко меняется по ходу формирования болезни.

♦ На начальных этапах патогенеза нефрита или цирроза печени важное значение имеют местные механизмы. По мере прогрессирования заболеваний общие звенья патогенеза начинают играть доминирующую роль в нарушении жизнедеятельности организма.

♦ При развитии эндокринопатий уже на ранних стадиях включены системные патогенетические звенья. Пример – гиперкортицизм – избыточное выделение в кровь глюко-, минерало- и андрогенных стероидных гормонов. В результате на первый план выходят генерализованные проявления: артериальная гипертензия, гипергликемия, иммунодепрессия, ионный дисбаланс и др.

•  Патогенные и адаптивные реакции. Патогенез всех болезней и патологических процессов включает как патогенные, так и адаптивные (компенсаторные, защитные, репаративные, саногенетические) реакции и процессы.

Так, при аллергической форме бронхиальной астмы выявляются патологические процессы (бронхоспазм, нарушение вентиляции и перфузии лёгких, диффузии газов через аэрогематический барьер) одновременно с адаптивными (обнаружение, фиксация, деструкция и элиминация из организма аллергена).

Принципы патогенетической терапии

Цель патогенетической терапии – прерывание или снижение эффективности механизмов повреждения и активация адаптивных (саногенетических) процессов. Иногда эти группы мероприятий называют патогенетической и саногенетической терапией соответственно.

•  Патогенетическая терапия. В качестве лечебного воздействия можно назвать применение антигистаминных препаратов при развитии воспаления или аллергических реакций. Торможение синтеза и эффектов гистамина даёт существенный терапевтический эффект.

•  Саногенетическая терапия. Примером терапевтических мероприятий, направленных на активацию адаптивных процессов, может быть применение комплекса иммуномодулирующих и иммуностимулирующих препаратов.

•  Заместительная терапия предусматривает ликвидацию дефицита или отсутствия в организме какого-либо фактора или факторов. Именно с этой целью применяют препараты гормонов (у пациентов с недостаточностью гормонов или их эффектов, например, при СД, надпочечниковой недостаточности, гипофункции гипофиза, половых желёз), ферментов (например, желудка и кишечника при нарушении полостного или мембранного пищеварения), витаминов (при гиповитаминозах).

ГЛАВА 3. НАСЛЕДСТВЕННАЯ ПАТОЛОГИЯ

Отдельные гены, хромосомы и геном в целом постоянно претерпевают разнообразные изменения. Хотя существуют механизмы репарации (восстановления) ДНК, часть повреждений и ошибок сохраняется. Изменения в последовательности и числе нуклеотидов в ДНК обозначают как мутации.

IМутации – инициальное звено патогенеза наследственных заболеваний.

В широком смысле термином «мутация» обозначают любые изменения генетического материала (пара нуклеотидов, ген, аллели, хромосомы, ядерный и митохондриальный геном). В узком значении термин «мутация» соотносят с изменениями на уровне гена, то есть генные мутации. Мутагены – причины мутаций – факторы химической, физической или биологической природы. Мутагенез (мутационный процесс) – изменения, приводящие к возникновению мутаций. Различают генные, хромосомные и геномные мутации.

Мутации обнаруживают как в соматических клетках (фенотипически проявляются только в мутировавшей клетке или её потомстве), так и в половых клетках. Последние потенциально могут быть переданы по наследству и проявляться в фенотипе потомства, в том числе и в виде наследственных заболеваний.

Этиология и патогенез наследственных болезней

•  Генные мутации

♦ По характеру изменений гена различают делеции, дупликации, инверсии, вставки, транзиции, миссенс- и нонсенс-мутации.

♦ По последствиям генных мутаций их классифицируют на нейтральные, регуляторные и динамические.

•  Хромосомные мутации (аберрации) характеризуются изменением структуры отдельных хромосом. Последовательность нуклеотидов в генах обычно не меняется, но изменение числа или положения генов при аберрациях может привести к генетическому дисбалансу.

Различают внутрихромосомные, межхромосомные и изохромосомные аберрации.

•  Изменения генома. Геномные мутации характеризуются изменением числа отдельных хромосом(моносомии и полисомии) или их гаплоидного набора (анеуплоидии и полиплоидии).

•  Мутагены классифицируют по происхождению (источнику) на эндогенные и экзогенные, а по природе на физические, химические и биологические.

 Экзогенные мутагены. К ним относятся многочисленные факторы внешней среды (например, радиационное излучение, алкилирующие агенты, окислители, многие вирусы).

 Эндогенные мутагены образуются при жизнедеятельности организма (например, свободные радикалы).

 Физические мутагены – ионизирующее излучение и температурный фактор.

 Химические мутагены – сильные окислители или восстановители (например, нитраты, нитриты, активные формы кислорода), алкилирующие агенты, пестициды (например, гербициды, фунгициды); некоторые пищевые добавки (например, ароматические углеводороды, цикламаты), продукты переработки нефти, органические растворители, лекарственные средства (например, цитостатики, содержащие ртуть средства, иммунодепрессанты).

 Биологические мутагены – вирусы (например, кори, краснухи, гриппа и др.); Аг некоторых микроорганизмов, транспозоны, онкогены.

•  Частота мутаций. Средняя частота возникновения мутаций в структурных локусах оценена в пределах от 10-5 до 10-6 на одну гамету за каждое поколение. Весь геном содержит 3х109 пар оснований, около 23 тыс. генов. Следовательно, каждое последующее поколение приобретает несколько десятков мутаций. В Каталоге наследственных заболеваний человека OMIM перечислено около 7000 моногенных болезней (вызываемых мутациями конкретного гена). Для значительного числа пора- жённых генов идентифицированы разные аллели, количество которых для некоторых болезней достигает десятков и сотен.

Наследственные формы патологии

Для наследственных форм патологии приняты определения, перечисленные ниже.

•  Наследственные – болезни, причиной которых является генная, хромосомная или геномная мутация. Они, как правило (но не всегда) передаются от родителей потомкам.

•  Генные – болезни, вызываемые генными мутациями.

•  Хромосомные – болезни, возникающие вследствие хромосомных и геномных мутаций.

•  Болезни с наследственной предрасположенностью (мультифактори-

альные, многофакторные) – болезни, развивающиеся в результате взаимодействия определённых комбинаций аллелей разных локусов и воздействий факторов окружающей среды.

•  Генетические болезни соматических клеток: злокачественные новообразования (изменения в генетическом материале являются этиологическими для злокачественного роста) и врождённые пороки, развившиеся вследствие мутаций.

•  Семейные – болезни, наблюдающиеся у двух и более членов семьи в одном или нескольких поколениях. Термин применяют для нозологических единиц, когда с высокой степенью вероятности подозревают их наследуемую природу, но наличие генетического дефекта не установлено.

•  Врождённые – болезни, проявившиеся при рождении (они могут быть наследственными и ненаследственными).

•  Врождённый порок развития – морфологический дефект органа, части его или большой области тела, возникший в результате нарушенного органогенеза. Врождённые пороки развития могут быть наследственными и приобретёнными (под действием тератогенов во внутриутробном периоде).

ГЕННЫЕ БОЛЕЗНИ

Типы наследования. Для любого моногенного заболевания существенной характеристикой является тип наследования: аутосомно-доминант- ный, аутосомно-рецессивный, сцепленный с хромосомой X(доминантный и рецессивный), голандрический (сцепленный с хромосомой Y) и митохондриальный.

♦ При заболеваниях с рецессивным типом наследования фенотип гетерозиготы может не отличаться от нормы (т.е. иметь слабые проявления заболевания или не иметь их).

♦ При заболеваниях с доминантным типом наследования пациенты в гетерозиготном состоянии имеют практически ту же клиническую картину, что и в гомозиготном состоянии, но проявления болезни у гомозигот тяжелее.

Аутосомно-доминантный тип наследования

Примеры: синдром Марфана, гемоглобиноз M, хорея Хантингтона, полипоз толстой кишки, семейная гиперхолестеринемия, нейрофиброматоз, полидактилия. Родословная с аутосомно-доминантным типом наследования (синдром Марфана в 5 поколениях) представлена на рис. 3-1А.

Рис. 3-1. Родословные с разными типами наследования заболеваний. А – аутосомно-доминантный; Б – аутосомно-рецессивный; В – доминантный Х-сцепленный; Г – рецессивный Х-сцепленный. Римские цифры – поколения. Кружок – пол женский, квадрат – пол мужской, тёмный кружок или квадрат – больной, наискось перечёркнутый тёмный кружок или квадрат – умерший больной. Стрелкой указан пробанд – больной или носитель изучаемого признака.

Особенности наследования: ❖ один из родителей пациента, как правило, болен; ❖ выраженность и количество проявлений зависят от действия факторов среды; ❖ частота патологии у лиц мужского и женского пола одинакова; ❖ в каждом поколении имеются больные (так называемый вертикальный характер распределения болезни); ❖ вероятность рождения больного ребёнка равна 50% (независимо от пола ребёнка и количества родов); ❖ непоражённые члены семьи, как правило, имеют здоровых потомков (поскольку не имеют мутантного гена).

Аутосомно-рецессивный тип наследования

Примеры: фенилкетонурия, адреногенитальный синдром, кожно-глазной альбинизм, галактоземия, гликогенозы, гиперлипопротеинемии, муковисцидоз. Родословная с аутосомно-рецессивным типом наследования (муковисцидоз в 4 поколениях) представлена на рис. 3-1Б. Особенности наследования: ❖ родители больного, как правило, здоровы; заболевание может обнаруживаться у других родственников (например, у двоюродных или троюродных братьев/сестёр больного);

❖ однообразные проявления болезни (в связи с высокой пенетрантностью); ❖ симптомы болезни обычно выявляются уже в детском возрасте; ❖ частота патологии у лиц мужского и женского пола равная; ❖ в родословной патология проявляется по горизонтали, часто у сибсов; ❖ заболевание отсутствует у единокровных (дети одного отца от разных матерей) и единоутробных (дети одной матери от разных отцов) братьев и сестёр; ❖ появление аутосомно-рецессивной патологии более вероятно при кровнородственных браках за счёт большей вероятности встречи двух супругов, гетерозиготных по одному и тому же патологическому аллелю, полученному от их общего предка.

Сцепленное с хромосомой X доминантное наследование

Примеры: одна из форм гипофосфатемии – витамин D-резистент- ный рахит, болезнь Шарко-Мари-Тута X-сцепленная доминантная, рото-лице-пальцевой синдром типа I. Родословная с доминантным X-сцепленным типом наследования витамин D-резистентного рахита в четырёх поколениях представлена на рис. 3-1В. Особенности наследования: ❖ поражение лиц мужского и женского пола;

❖ у мужчин более тяжёлое течение заболевания; ❖ передача больным мужчиной патологического аллеля только дочерям, но не сыновьям (сыновья получают от отца хромосому Y); ❖ передача больной женщиной заболевания и сыновьям, и дочерям с равной вероятностью.

Сцепленное с хромосомой X рецессивное наследование

Примеры заболеваний: гемофилия A, гемофилия B, дальтонизм, мышечная дистрофия Дюшенна-Беккера, болезнь Хантера (мукополисахаридоз типа II), гипогаммаглобулинемия брутоновского типа. Родословная с рецессивным X-сцепленным типом наследования (гемофилия A в 4 поколениях) представлена на рис. 3-1Г. Признаки заболевания: ❖ больные рождаются в браке фенотипически здоровых родителей; ❖ заболевание наблюдается исключительно у лиц мужского пола; ❖ матери больных – облигатные носительницы патологического гена; ❖ сын никогда не наследует заболевание от отца;

❖ у носительницы мутантного гена вероятность рождения больного ребёнка равна 25% (50% родившихся мальчиков – больные).

Голандрический, или сцепленный с хромосомой Y, тип наследования

Примеры: гипертрихоз ушных раковин, избыточный рост волос на средних фалангах пальцев кистей, азооспермия.

Особенности наследования: ❖ передача признака от отца всем сыновьям (только сыновьям, дочери никогда не наследуют признак от отца);

❖ «вертикальный» характер наследования признака; ❖ вероятность наследования для лиц мужского пола равна 100%;

Митохондриальное наследование

Примеры заболеваний («митохондриальные болезни»): атрофия зрительного нерва Лебера, синдромы Лея (митохондриальная миоэнцефалопатия), MERRF (миоклоническая эпилепсия), кардиомиопатия дилатационная семейная.

Особенности наследования: ❖ наличие патологии у всех детей больной матери; ❖ рождение здоровых детей у больного отца и здоровой матери (объясняется тем, что митохондриальные гены наследуются от матери).

ХРОМОСОМНЫЕ БОЛЕЗНИ

Хромосомные болезни выявляются у новорождённых с частотой около 6:1000. Инициальное звено патогенеза – геномная или хромосомная мутация. Тяжесть нарушений обычно прямо коррелирует со степенью хромосомного дисбаланса: чем больше хромосомного материала вовлечено в аберрацию, тем раньше проявляется хромосомный дисбаланс в онтогенезе и тем значительнее нарушения физического и психического развития индивида.

Рис. 3-2. Характеристика наиболее частых аутосомных трисомий [по 4].

Особенности: ❖ большинство геномных мутаций (полиплоидии, трисомии по крупным хромосомам [рис. 3-2], моносомии по аутосомам) летальны; ❖ мутации в гаметах приводят к развитию так называемых полных форм хромосомных болезней, когда изменения кариотипа выявляются во всех клетках организма; ❖ мутации в соматических клетках на ранних этапах эмбриогенеза приводят к развитию мозаицизма: часть клеток организма имеет нормальный кариотип, а другая часть – аномальный.

Аномалии половых хромосом. Нарушение расхождения половых хромосом приводит к образованию аномальных гамет: у женщин – XX и 0 (в последнем случае гамета не содержит половых хромосом); у мужчин – XY и 0. При слиянии половых клеток в подобных случаях возникают количественные нарушения половых хромосом. При болезнях, вызванных дефицитом или избытком Х хромосом, нередко наблюдается мозаицизм.

•  Синдром Кляйнфелтера: ❖ Частота: 2-2,5 на 1000 новорождённых мальчиков. ❖ Кариотип:разнообразные цитогенетические варианты (47,XXY; 48,XXXY; 49,XXXXY и др.), но чаще встречается вариант 47,XXY. ❖ Проявления: высокий рост, непропорционально длинные конечности, отложение жира по женскому типу, евнухоидное телосложение, скудное оволосение, гинекомастия, гипогенитализм, бесплодие (в результате нарушения сперматогенеза, снижения продукции тестостерона и увеличения продукции женских половых гормонов), снижение интеллекта (чем больше в кариотипе добавочных хромосом, тем более выражено). ❖ Лечение мужскими половыми гормонами направлено на коррекцию вторичных половых признаков, но и после терапии больные остаются бесплодными.

•  Трисомия X – наиболее частый синдром из группы полисомий X; частота 1:1000 новорождённых девочек, кариотип 47,XXX; пол – женский, фенотип женский; как правило, физическое и психическое развитие у женщин с этим синдромом не имеет отклонений от нормы.

•  Синдром Шерешевского-Тёрнера. ❖ Частота синдрома: 1:3000 но- ворождённых девочек ❖Кариотип: 45,Х0, но встречаются и другие варианты. ❖ Проявления: низкий рост, короткая шея с избытком кожи или крыловидной складкой, широкая, часто деформированная грудная клетка, деформация локтевых суставов, недоразвитие первичных и вторичных половых признаков, бесплодие. ❖Раннее лечение женскими половыми гормонами может оказаться эффективным.

БОЛЕЗНИ С НАСЛЕДСТВЕННЫМ ПРЕДРАСПОЛОЖЕНИЕМ

Болезни с наследственным предрасположением называют также многофакторными (мультифакториальными), так как их возникновение определяется взаимодействием наследственных факторов и факторов внешней среды. К болезням с наследственным предрасположением относятся ишемическая болезнь сердца (ИБС), гипертоническая болезнь, бронхиальная астма, психические заболевания, СД, ревматические болезни, язвенная болезнь желудка, врождённые пороки развития (ВПР) и многие другие. Болезни с наследственным предрасположением классифицируют – в зависимости от числа генов, определяющих предрасположенность, – на моногенные и полигенные.

•  Моногенные болезни с наследственным предрасположением детерминируются одним мутантным геном и возникают при действии конкретного и обязательного фактора внешней среды. Пример – непереносимость лактозы: при мутантной форме гена лактазы употребление молока приводит к развитию кишечного дискомфорта и поноса.

•  Полигенные болезни. Предрасположенность к развитию полигенных болезней детерминируется взаимодействием нормальных и изменён- ных (мутировавших) генов, хотя каждый из них по отдельности не приводит к развитию заболевания. Индивид с такой комбинацией генов под действием определённого фактора окружающей среды достигает «порога возникновения» болезни и заболевает.

Характеристика многофакторных болезней: ❖ наследование не отвечает менделевским закономерностям; ❖ патогенез зависит от «удельного вклада» генетических и средовых факторов; эта зависимость различна как для разных заболеваний, так и для каждого человека; ❖ характерно наличие большого числа клинических вариантов; ❖ наблюдается более высокая конкордантность по заболеванию у монозиготных близнецов в сравнении с дизиготными.

Врождённые пороки развития

Аномалии развития (в том числе врождённые пороки – ВПР) и их причины изучает тератология.Распространённость ВПР составляет 2-3% от общего количества родившихся живыми детей.

•  Типы ВПР. В зависимости от времени воздействия повреждающих факторов выделяют гаметопатии, бластопатии, эмбриопатии и фетопатии.

 Гаметопатии – результат воздействия на половые клетки (в основе лежат мутации в половых клетках).

 Бластопатии – следствие поражения бластоцисты – зародыша первых 15 сут после оплодотворения (до завершения формирования зародышевых листков). Результатом бластопатий являются двойниковые пороки (сросшиеся близнецы), циклопия (наличие одного или двух слившихся глазных яблок в единственной орбите по срединной линии лица).

 Эмбриопатии – результат воздействия тератогенного фактора на эмбрион в период с 16-го дня до 8 недели беременности. К этой группе относятся талидомидные, диабетические, алкогольные и некоторые медикаментозные эмбриопатии, а также ВПР, развившиеся под влиянием вируса краснухи.

 Фетопатии – следствие повреждения плода от 9-й недели до момента рождения. К фетопатиям относятся, например, крипторхизм, открытый боталлов проток или пренатальная гипоплазия какого-либо органа или плода в целом.

•  Категории ВПР:

 агенезия – полное отсутствие органа (например, тимуса, почки, глаз);

 аплазия и гипоплазия – отсутствие или значительное недоразвитие органа при наличии его сосудистой ножки и нервов (например, одной почки, селезёнки, лёгкого, кишечника);

 атрезия – полное отсутствие канала или естественного отверстия (например, атрезия наружного слухового прохода, пищевода, ануса);

 гетеротопия – перемещение клеток, тканей или части органа в другую ткань (например, клеток поджелудочной железы в дивертикул Меккеля, хромаффинных клеток в ткань лёгких);

 персистирование – сохранение эмбриональных структур, исчезающих в норме к определённому этапу развития (например, открытый артериальный проток у годовалого ребёнка, крипторхизм);

 стеноз – сужение просвета отверстия или канала (например, клапанного отверстия сердца, привратника желудка, фрагмента кишечника);

 удвоение (утроение) – увеличение числа органов или его части (например, удвоение матки, мочеточников);

 эктопия – необычное расположение органа (например, почки в малом тазу, сердца – вне грудной клетки).

•  Уродства (как правило, дефекты морфогенеза) – наиболее тяжёлые проявления ВПР.

•  Дисплазии (мальформации, деформации, дизрупции) – морфологические врождённые изменения, выходящие за пределы общепринятой нормы.

•  Малые аномалии развития (стигмы дизэмбриогенеза: синдактилия, ямочки на щеках, аномалии ушных раковин, искривление мизинца и др.) – врождённые дефекты, не требующие косметической или медицинской коррекции.

•  Клинически значимые пороки развития – врождённые аномалии, требующие тех или иных форм медицинского вмешательства (квалифицированной диагностики, медицинской коррекции). Степень тяжести врождённого порока может быть различной: от малых аномалий (например, полидактилия) до очень тяжёлых системных поражений (гидроцефалия, болезнь Дауна).

ЭТИОЛОГИЯ И ПАТОГЕНЕЗ

На развитие организма оказывают влияние как генетические факторы, так и факторы окружающей среды. Факторы, приводящие к развитию ВПР, обозначают как тератогены. Большинство врождённых пороков обусловлено воздействием факторов внешней среды, генетическими дефектами или их сочетанием (табл. 3-1). В ряде случаев не удаётся установить причину врождённого дефекта (спорадические болезни).

Таблица 3-1. Причины врождённых аномалий

Тератогенные агенты

•  Ионизирующее излучение. Доза облучения и срок гестации определяют степень и характер аномалий плода. Так у детей, рождён- ных после атомных взрывов в Хиросиме и Нагасаки (внутриутробное облучение), наблюдали различные аномалии ЦНС и лейкозы. Однако, эти поражения возникали в случаях, когда плод подвергался облучению до 16 недель гестации, в период органогенеза; при облучении на более поздних сроках происходит задержка роста на фоне нормального умственного развития.

Рис. 3-3. Критические сроки развития возможных пороков развития по системам органов, [по 4].

♦ Стадия внутриутробного развития плода (рис. 3-3). Степень воздействия на эмбрион зависит от срока беременности на момент воздействия: ❖ 2-4 нед. после оплодотворения: плод либо развивается нормально, либо гибнет; ❖ 4-12 нед.: возникают микроцефалия, умственная отсталость, катаракта, задержка роста, микрофтальмия; ❖ 12-16 нед: развивается умственная отсталость или задержка роста; ❖ после 20 нед: повреждение волосяных фолликулов, поражение кожи и слизистых оболочек, угнетение красного костного мозга.

♦ Доза: ❖ дозу облучения 5-10 рад считают нетератогенной; ❖ 10- 25 рад – возможно повреждающее действие на плод; ❖ более 25 рад – часто возникают структурные пороки развития, задержка роста и гибель плода. После воздействия такой дозы рекомендуют прерывание беременности (медицинский аборт).

•  Лекарственные препараты (ЛС). Американская Федеральная Комиссия по пищевым продуктам и ЛС (FDA) предложила все ЛС подразделять на 5 категорий:

♦ A. ЛС совершенно безвредны для плода (например, витамины).

♦ B. Опыты на животных не выявили тератогенности, но нет контрольных исследований на беременных. В эту категорию также входят ЛС, оказывающие повреждающее воздействие на животных, но не на человека (например, пенициллин, дигоксин, адреналин, тербуталин).

♦ C. Исследования на животных показали или тератогенное, или эмбриотоксическое воздействие ЛС на плод, но исследования на людях не проводились. Эти ЛС можно применять только в тех случаях, когда польза от их применения перевешивает потенциальный риск для плода (фуросемид, гуанидин, верапамил).

♦ D. Есть доказательства тератогенности ЛС. Однако, польза от его применения при определённых обстоятельствах превышает риск для плода (например, фенитоин).

♦ X. Исследования на животных и людях выявили очевидную опасность для плода. ЛС этой категории противопоказаны беременным или женщинам, желающим забеременеть (например, изотретиноин).

•  Алкоголь – один из наиболее распространённых тератогенов. Количество употребляемого алкоголя коррелирует со степенью вредного воздействия на плод. Выраженность поражения (сильная, слабая или её отсутствие) во многом зависит от генетической предрасположенности. В настоящее время нет данных о безопасной дозе потребления алкоголя во время беременности. В связи с этим рекомендован полный отказ от алкоголя во время беременности.

•  Наркотики:

 Марихуана. У женщин, курящих марихуану во время беременности, повышена частота выкидышей и преждевременных родов.

 Героин. Побочные продукты синтеза, встречающиеся в недостаточно очищенном героине, часто обладают выраженным тератогенным эффектом. Основное неблагоприятное действие на плод при употреблении героина состоит в развитии выраженного «синдрома отмены» у новорождённого, что в 3-5% случаев приводит к гибели ребёнка. Метадон (аналог героина) обладает такими же свойствами.

 Фенилциклидин (ангельская пыль) иногда вызывает развитие дефектов лица у плода.

 Кокаин. При употреблении беременной кокаина увеличивается риск развития врождённых аномалий, гибели плода и рождения детей с малой массой тела.

•  Гипертермия. Длительный подъём температуры (до 38,9 °С и выше) у женщины в период с 4 по 14 нед. беременности обладает большим тератогенным эффектом, чем кратковременные подъёмы до тех же цифр.

•  Вещества, загрязняющие окружающую среду, можно рассматривать как тератогены, хотя изучение их влияния представляет большие трудности.

•  Инфекционные заболевания матери. Воздействие вирусных, паразитарных и бактериальных инфекций на плод во время беременности – одна из частых причин развития врождённых дефектов. Большинство детей, матери которых были инфицированы в I триместре беременности, рождается с различными пороками развития и малой массой тела.

 Вирус краснухи. При заражении краснухой на первом месяце беременности вероятность развития аномалий плода составляет 50%. Риск снижается до 22% при инфицировании на втором месяце и до 6-10% на третьем-четвёртом месяце беременности.

 Цитомегаловирус поражает плод в 1-2% случаев всех беременностей. От 1 до 3 из 10 000 новорождённых страдает серьёзными пороками развития.

 Вирус простого герпеса 2-го типа. Хотя герпетическая инфекция встречается довольно часто, её передача от больной беременной плоду происходит менее чем в 0,02% случаев. Ещё реже возникают пороки развития, возможно из-за того, что инфицирование плода в I триместре беременности обычно приводит к его гибели.

 Токсоплазма. Количество детей с врождённым токсоплазмозом колеблется от 1 до 6 на 1 000 новорождённых. Внутриутробное заражение плода происходит у 30% инфицированных беременных.

 Treponema pallidum способна проходить через плацентарный барьер на любом сроке беременности, но заражение плода редко происходит до 16-18 нед. гестации. Последствия внутриутробного инфицирования: преждевременные роды или выкидыш, гибель плода, смерть 50% заражённых новорождённых, врождённый сифилис.

 Вирус ветряной оспы. Первичное инфицирование проявляется в виде ветряной оспы, рецидив заболевания называют опоясывающим лишаем. Во время беременности трансплацентарная передача вируса плоду в 5% случаев происходит в I триместре беременности и приблизительно в 24% случаев, если заражение женщины произошло на последнем месяце беременности. При опоясывающем лишае инфицирования плода не происходит.

 Энтеровирусы. Инфицирование матери вирусом Коксаки вызывает пороки развития или гибель плода в 40% случаев.

Методы диагностики

•  Клинико-синдромологический метод позволяет выявлять морфологические, биохимические и функциональные признаки наследственных форм патологии (например, дефицит плазменного фактора VIII при подозрении на гемофилию A; кариотип 45,Х0 при подозрении на синдром Шерешевского-Тёрнера; поражения скелета, сердечнососудистой системы и глаз при подозрении на синдром Марфана).

•  Клинико-генеалогический метод позволяет выявить патологические признаки и проследить особенности их передачи в поколениях при составлении родословной.

 Составление родословной начинают со сбора сведений о семье консультирующегося или пробанда. Терминология: пробанд – больной или носитель изучаемого признака, сибсы (братья и сёс- тры) – дети одной родительской пары, семья – в узком смысле родительская пара и их дети, но иногда и более широкий круг кровных родственников, хотя в последнем случае лучше применять термин род.

 Близнецовый метод базируется на сравнительном анализе частоты определённого признака в разных группах близнецов, а также в сопоставлении с партнёрами монозиготных пар между собой и общей популяцией. Идентичность близнецов по анализируемому признаку обозначают как конкордантность, а отличие – как дискордантность. Роль наследственности и факторов среды в возникновении патологии у близнецов оценивают по специальным формулам.

•  Цитогенетическая диагностика основана на микроскопическом изучении хромосом с целью выявления структурных нарушений в хромосомном наборе (кариотипирование). В качестве материала используют тканевые культуры с большим числом делящихся клеток, чаще лимфоциты периферической крови. Хромосомы на стадии метафазы изучают при помощи специальных методов окрашивания и составляют идиограммы (систематизированные кариотипы с расположением хромосом от наибольшей к наименьшей), что позволяет выявлять геномные и хромосомные мутации.

•  Биохимическая диагностика базируется на изучении биохимических показателей, отражающих сущность болезни (например, активность ферментов, наличие патологических метаболитов, концентрация компонентов ферментативной реакции).

•  Молекулярная диагностика. При помощи методов ДНК-диагностики устанавливают последовательность расположения отдельных нуклеотидов, выделяют гены и их фрагменты, устанавливают их наличие в изучаемых клетках. К числу наиболее эффективных методов относятся гибридизация ДНК, клонирование ДНК, полимеразная цепная реакция.

 Гибридизация ДНК. Для определения порядка расположения нуклеотидов в исследуемом генетическом материале изучаемую ДНК помещают в специальную среду, где происходит контакт ДНК с нитями другой нуклеиновой кислоты. В случае комплементарности каких-либо двух нитей происходит их «сшивка». При специальных исследованиях используют генетические «зонды» – фрагменты меченной радиоактивным изотопом однонитевой ДНК с известной последовательностью нуклеотидов.

 Блот-гибридизация. Для выявления интересующих (в том числе мутантных) генов ДНК подвергают рестрикции, разделяют по молекулярной массе, денатурируют и переносят на носитель (нейлоновую или иную мембрану). Фиксированную на носителе в виде пятна ДНК гибридизируют с меченым радиоактивным изотопом ДНКили РНК-зондом. В результате определяют положение аномального фрагмента ДНК.

♦ Клонирование ДНК. С помощью специализированных ферментов (ДНК-рестриктаз) подразделяют нить ДНК на отдельные группы генов или на единичные гены. Для изучения признаков (в том числе патологических), кодируемых данными генами, особенностей транскрипции и трансляции создают нужное количество копий данного гена.

♦ Полимеразная цепная реакция (специфическая амплификация ДНК). Применяют для изучения локусов предполагаемых мутаций и других особенностей структуры ДНК. Для исследования можно использовать любой биологический материал, содержащий ДНК (например, кусочек ткани, капля или пятно крови, смыв полости рта, луковица корня волос). На первом этапе исследуемую ДНК подвергают отжигу: расщепляют на две нити при нагревании до 95-98 °C. Затем одну из нитей гибридизируют и стимулируют синтез последовательности, комплементарной исследуемой ДНК (с помощью ДНК-полимеразы). В первом цикле полимеразной цепной реакции гибридизацию выполняют с исследуемым фрагментом ДНК, а в последующих – с вновь синтезированными. При каждом цикле реакции число синтезированных копий участка ДНК увеличивается двукратно. Циклы повторяют до накопления нужного количества ДНК.

Принципы лечения

Лечение наследственных болезней базируется на трёх принципах: этиотропном, патогенетическом и симптоматическом.

•  Этиотропная терапия направлена на устранение причины заболевания. С этой целью разрабатываются, апробируются и частично могут быть применены методы коррекции генетических дефектов, называемые генной терапией.

•  Патогенетическая терапия имеет целью разрыв звеньев патогенеза. Для достижения этой цели применяют несколько методов.

♦ Заместительная терапия – введение в организм дефицитного вещества (не синтезирующегося в связи с аномалией гена, который контролирует продукцию данного вещества; например, инсулина при СД, антигемофильного глобулина человека при гемофилии).

♦ Коррекция метаболизма путём: ❖ ограничения попадания в организм веществ, метаболически не усваивающихся (например, фенилаланина или лактозы); ❖ выведения из организма метаболитов, накапливающихся в нём в избытке (например, фенилпировиноградной кислоты или холестерина); ❖ регуляции активности ферментов (например, подавление активности КФК при отдельных видах миодистрофий, активация липопротеинлипазы крови при гиперхолестеринемии). ♦ Хирургическая коррекция дефектов (например, создание шунта между нижней полой и воротной венами у пациентов с «гепатотропными» гликогенозами).

•  Симптоматическая терапия. Направлена на устранение симптомов, усугубляющих состояние пациента (например, применение веществ, снижающих вязкость секретов экзокринных желёз при муковисцидозе; хирургическое удаление дополнительных пальцев и перемычек кожи между ними при поли- и синдактилии; выполнение пластических операций при дефектах лица, пороках сердца и крупных сосудов).

Профилактика

Всем семьям, имеющим случаи наследственных заболеваний, т.е. при повышенной вероятности рождения ребёнка с патологией необходимо проводить медико-генетическое консультирование, задачи которого – выявление генетических заболеваний и определение возвратного риска.

•  Выявление генетических заболеваний. В первую очередь необходима

точная диагностика, позволяющая определить природу заболевания и отдифференцировать состояния, имеющие сходную клиническую картину.

•  Определение возвратного риска. При установлении точного диагноза

становится возможным рассчитать вероятность повторного случая заболевания. В связи с этимнеобходима пренатальная диагностика.

•  Анализ родословной (см. рис. 3-1) – первый этап медико-генетичес-

кого консультирования. Необходимо собрать полную информацию о состоянии здоровья всех членов семьи (не менее четырёх поколений).

ГЛАВА 4. ПАТОЛОГИЯ КЛЕТКИ

Клетки – основные структурно-функциональные элементы тканей, органов и организма в целом – для выполнения своих функций поддерживают собственный гомеостаз, осуществляют обмен веществ и энергии, реализуют генетическую информацию, передают её потомству и прямо или опосредованно (через межклеточный матрикс и жидкости) обеспечивают функции организма. Любая клетка (рис. 4-1) либо функционирует в границах нормы (гомеостаз), либо приспосабливается к жизни в изменившихся условиях (адаптация), либо гибнет при превышении её адаптивных возможностей (некроз) или действии соответствующего сигнала (апоптоз).

Рис. 4-1. Гомеостаз, адаптация и типовые формы патологии клеток. Слева в овале – границы нормы. Существенное свойство типовых патологических процессов – их обратимость. Если степень повреждения выходит за пределы адаптивных возможностей, процесс становится необратимым (примеры – некроз, апоптоз, дисплазия, опухолевый рост).

• Гомеостаз (гомеокинез) – динамическое равновесие в данной клетке, с другими клетками, межклеточным матриксом и гуморальными факторами, обеспечивающее оптимальную метаболическую и информационную поддержку. Жизнь клетки в условиях гомеостаза – постоянное взаимодействие с различными сигналами и факторами.

•  Адаптация – приспособление в ответ на изменения условий существования клеток (в том числе на воздействие повреждающего фактора).

•  Гибель клетки – необратимое прекращение жизнедеятельности. Происходит либо вследствие генетически программированного процесса (апоптоз), либо в результате летального повреждения(некроз).

•  Типовые формы патологии клеток: дистрофии, дисплазии, метаплазия, гипотрофия (атрофия), гипертрофия, а также некроз и патологические формы апоптоза.

Повреждение

Повреждающие факторы

Рис. 4-2. Признаки обратимого и необратимого повреждения. [по 4].

•  Эффект повреждающего фактора может быть обратимым или необратимым (рис. 4-2).

•  Природа повреждающего фактора трояка: физическая, химическая или биологическая (включая социальную).

•  Генез. По происхождению повреждающие факторы подразделяют на экзогенные и эндогенные.

♦ Экзогенные факторы (действуют на клетку извне):

❖ физические воздействия (механические, термические, лучевые, электрический ток);

❖ химические агенты (кислоты, щёлочи, этанол, сильные окислители);

❖ инфекционные факторы (вирусы, риккетсии, бактерии, эндо- и экзотоксины микроорганизмов, гельминты и др.).

♦ Эндогенные агенты (образуются и действуют внутри клетки):

❖ физической природы (например, избыток свободных радикалов; колебания осмотического давления);

❖ химические факторы (например, накопление или дефицит ионов H+, K+, Ca2+, кислорода, углекислого газа, перекисных соединений, метаболитов и др.);

❖ биологические агенты (например, белки, лизосомальные ферменты, метаболиты, Ig, цитотоксические факторы; дефицит или избыток гормонов, ферментов, простагландинов – Пг).

•  Эффекты повреждающих факторов достигаются прямо (первичные факторы повреждения) илиопосредованно (при формировании цепи вторичных патологических реакций – вторичные факторы повреждения).

МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК

К наиболее важным механизмам клеточной альтерации относятся:

♦ расстройства энергетического обеспечения клетки;

♦ повреждение мембран и ферментов;

♦ активация свободнорадикальных и перекисных процессов;

♦ дисбаланс ионов и воды;

♦ нарушения в геноме или экспрессии генов;

♦ расстройства регуляции функций клеток.

Расстройства энергетического обеспечения клетки

Энергоснабжение клетки может расстраиваться на этапах ресинтеза, транспорта и утилизации энергии АТФ. Главная причина расстройств – гипоксия (недостаточное снабжение клеток кислородом и нарушение биологического окисления).

•  Ресинтез АТФ нарушается в результате дефицита кислорода и субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, а также повреждения и разрушения митохондрий (в которых осуществляются реакции цикла Кребса и со- пряжённый с фосфорилированием АДФ перенос электронов к молекулярному кислороду).

•  Транспорт энергии. Заключённая в макроэргических связях энергия АТФ поступает к эффекторным структурам (миофибриллы, ионные насосы и др.) с помощью АДФ-АТФ-транслоказы и КФК. При повреждении этих ферментов или мембран клеток нарушается функция эффекторных структур.

•  Утилизация энергии может быть нарушена преимущественно за счёт уменьшения активности АТФаз (АТФаза миозина, Na+K+-АТФаза плазмолеммы, протонная и калиевая АТФаза, Са2+-АТФаза и др.), КФК, адениннуклеотидтрансферазы.

Повреждение мембран

Повреждение клеточных мембран происходит за счёт следующих процессов:

•  Активация гидролаз. Под влиянием патогенных факторов активность мембраносвязанных, свободных (солюбилизированных) и лизосомальных липаз, фосфолипаз и протеаз может значительно увеличиться (например, при гипоксии и ацидозе). В результате фосфолипиды и белки мембран подвергаются гидролизу, что сопровождается значительным повышением проницаемости мембран.

•  Расстройства репарации мембран. При воздействии повреждающих факторов репаративный синтез альтерированных или утраченных мембранных макромолекул (а также их синтез de novo) подавляется, что приводит к недостаточному восстановлению мембран.

•  Нарушения конформации макромолекул (их пространственной структуры) приводит к изменениям физико-химического состояния клеточных мембран и их рецепторов, что приводит к искажениям или потере их функций.

•  Разрыв мембран. Перерастяжение и разрывы мембран набухших клеток и органоидов в результате их гипергидратации (следствие значительного увеличения осмотического и онкотического давления) – важный механизм повреждения мембран и гибели клетки.

•  Свободнорадикальные и перекисные реакции – в норме это необходимое звено транспорта электронов, синтеза Пг и лейкотриенов, фагоцитоза, метаболизма катехоламинов и др. В свободнорадикальные реакции вовлекаются белки, нуклеиновые кислоты и, особенно, липиды, учитывая наличие большого их числа в мембранах клеток (свободнорадикальное перекисное окисление липидов – СПОЛ). При действии патогенных факторов генерация свободных радикалов и СПОЛ значительно возрастает, что усиливает повреждение клеток.

♦ Этапы СПОЛ: образование активных форм кислорода – генерация свободных радикалов органических и неорганических веществ – продукция перекисей и гидроперекисей липидов.

Активные формы кислорода – ❖ синглетный (Ό2) ❖ супероксидный радикал (O2)

❖ пероксид водорода (H2O2) ❖ гидроксильный радикал (OH).

♦ Прооксиданты и антиоксиданты. Интенсивность СПОЛ регулируется соотношением активирующих (прооксидантов) его и подавляющих (антиоксидантов) факторов.

❖ Прооксиданты – легко окисляющиеся соединения, нейтрализующие свободные радикалы (нафтохиноны, витамины A и D, восстановители – НАДФH2, НАДH2, липоевая кислота, продукты метаболизма Пг и катехоламинов).

❖ Антиоксиданты – вещества, ограничивающие или даже прекращающие свободнорадикальные и перекисные реакции (ретинол, каротиноиды, рибофлавин, токоферолы, маннитол, супероксиддисмутаза, каталаза).

♦ Детергентные эффекты амфифилов. В результате активации липопероксидных реакций и гидролаз накапливаются гидроперекиси липидов, свободные жирные кислоты и фосфолипиды – амфифилы (вещества, способные фиксироваться как в гидрофобной, так и в гидрофильной зоне мембран). Это ведёт к формированию обширных амфифильных кластеров (простейшие трансмембранные каналы), микроразрывам и разрушению мембран.

Дисбаланс ионов и воды

Внутриклеточная жидкость содержит примерно 65% всей воды организма и характеризуется низкими концентрациями Na+ (10 ммоль/л), Cl (5 ммоль/л), HCO3 (10 ммоль/л), но высокой концентрацией K+ (150 ммоль/л) и PO43- (150 ммоль/л). Низкая концентрация Na+ и высокая концентрация K+ обусловлены работой Na+,K+-АТФазы, выкачивающей Na+ из клеток в обмен на K+. Клеточный дисбаланс ионов и воды развивается вслед за расстройствами энергетического обеспечения и повреждением мембран.

К проявлениям ионного и водного дисбаланса относятся: ❖ изменение соотношения отдельных ионов в цитозоле; ❖ нарушение трансмембранного соотношения ионов; ❖ гипергидратация клеток; ❖ гипогидратация клеток; ❖ нарушения электрогенеза.

Рис. 4-3. Состояние взвешенных в растворе NaCl эритроцитов. По оси абсцисс: концентрация (С) NaCl (ммоль/л); по оси ординат: объём клеток (V). При концентрации NaCl 154 ммоль/л объём клеток такой же, как и в плазме крови (изотонический раствор NaCl), При увеличении концентрации NaCl (гипертонический раствор NaCl) вода выходит из эритроцитов, и они сморщиваются. При уменьшении концентрации NaCl (гипотонический раствор NaCl) вода входит в эритроциты, и они набухают. При гипотоничности раствора, примерно в 1,4 раза превышающей значение изотонического раствора, происходит разрушение мембраны. [5].

•  Изменения ионного состава обусловлены повреждениями мембранных АТФаз и дефектами мембран. Так, вследствие нарушения работы Na+,K+-АТФазы происходит накопление в цитозоле избытка Na+ и потеря клеткой K+.

•  Осмотическое набухание и осмотическое сморщивание клеток. Состояние клеток при изменении осмотичности рассмотрено на рис. 4-3.

•  Гипергидратация. Основная причина гипергидратации повреждён- ных клеток – повышение содержания Na+, а также органических веществ, что сопровождается увеличением в них осмотического давления и набуханием клеток. Это сочетается с растяжением и

• микроразрывами мембран. Такая картина наблюдается, например, при осмотическом гемолизе эритроцитов (рис. 4-3). Гипогидратация клеток наблюдается, например, при лихорадке, гипертермии, полиурии, инфекционных заболеваниях (холере, брюшном тифе, дизентерии). Эти состояния ведут к потере организмом воды, что сопровождается выходом из клеток жидкости, а также органических и неорганических водорастворимых соединений.

•  Нарушения электрогенеза (изменения характеристик мембранного потенциала – МП и потенциалов действия – ПД) имеют существенное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения ЭКГ при повреждении клеток миокарда, электроэнцефалограммы при патологии нейронов головного мозга, электромиограммы при изменениях в мышечных клетках.

Генетические нарушения

Изменения в геноме и экспрессии генов – существенный фактор повреждения клетки. К таким нарушениям относятся мутации, дерепрессии и репрессии генов, трансфекции, нарушения митоза.

•  Мутации (так, мутация гена инсулина приводит к развитию сахарного диабета).

•  Дерепрессия патогенного гена (дерепрессия онкогена сопровождается трансформацией нормальной клетки в опухолевую).

•  Репрессия жизненно важного гена (подавление экспрессии гена фенилаланин 4-монооксигеназы обусловливает гиперфенилаланинемию и развитие олигофрении).

•  Трансфекция (внедрение в геном чужеродной ДНК). Например, трансфекция ДНК вируса иммунодефицита приводит к возникновению СПИДа.

•  Нарушения митоза (так, деление ядер эритрокариоцитов без деления цитоплазмы наблюдается при мегалобластных анемиях) и мейоза (нарушение расхождения половых хромосом ведёт к формированию хромосомных болезней).

ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЙ КЛЕТОК

Любое повреждение клетки вызывает в ней разной степени выраженности специфические и неспецифические изменения. Специфические изменения развиваются при действии определённого патогенного фактора на различные клетки или в определённых видах клеток при действии разных повреждающих агентов.

•  Патогенные факторы, вызывающие специфические изменения в различных клетках: осмотическое давление, разобщители, гиперальдостеронемия и др.

 Осмотическое давление. Повышение осмотического давления в клетке всегда сопровождается её гипергидратацией, растяжением мембран и нарушением их целостности (феномен «осмотическая деструкция клеток»).

 Разобщители. Под влиянием разобщителей окисления и фосфорилирования (например, высших жирных кислот – ВЖК или Ca2+) снижается или блокируется сопряжение этих процессов и эффективность биологического окисления.

 Гиперальдостеронемия. Повышенное содержание в крови и интерстиции альдостерона ведёт к накоплению в клетках Na+.

•  Группы клеток, реагирующие специфическими изменениями на действие различных повреждающих агентов:

 Мышечные элементы на влияние разнообразных патогенных факторов значительной силы реагируют развитием их контрактуры.

 Эритроциты при различных повреждениях подвергаются гемолизу с выходом Hb.

Неспецифические изменения (стереотипные, стандартные) развиваются при повреждении различных видов клеток и действии на них широкого спектра патогенных агентов. Примеры: ацидоз, чрезмерная активация свободнорадикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, дисбаланс ионов и воды, снижение эффективности биологического окисления.

Типовые формы патологии

Основными типовыми формами патологии клеток являются их гипотрофия и атрофия, гипертрофия и дистрофии, дисплазии, метаплазия, а также некроз и апоптоз.

Гипотрофия и атрофия. Гипотрофия характеризуется уменьшением размеров и массы клетки, крайней степенью чего является атрофия. Гипотрофия и атрофия обычно сочетаются с уменьшением количества клеток – гипоплазией. Это приводит к уменьшению объёма органа, истончению кожи и слизистых оболочек. Пример: уменьшение массы и числа клеток в ишемизированной ткани или органе.Гипертрофия. Для гипертрофии характерно увеличение размеров и массы клетки. Нередко это сопровождается увеличением числа клеток (гиперплазией). Выделяют физиологическую и патологическую гипертрофию.

•  Физиологическая гипертрофия носит адаптивный характер (например, гипертрофия скелетных мышц у спортсменов).

•  Патологическая гипертрофия имеет (наряду с адаптивным) патологическое значение. Различают рабочую, викарную и нейрогуморальную патологическую гипертрофию, сочетающуюся с ремоделированием органа или ткани.

 Рабочая гипертрофия развивается при постоянно повышенной нагрузке (например, патологическая гипертрофия миокарда при гипертонической болезни).

 Викарная (заместительная) гипертрофия развивается в одном из парных органов при удалении второго.

 Нейрогуморальная гипертрофия развивается при нарушении нейрогуморальной регуляции (например, акромегалия, гинекомастия).

Дистрофии

Клеточные дистрофии – нарушения обмена веществ, сопровождающиеся расстройством функций клеток.

•  Механизмы дистрофий разнообразны:

❖ синтез аномальных (в норме не встречающихся в клетке) веществ (например, белково-полисахаридного комплекса амилоида);

❖ избыточное превращение одних соединений в другие (например, углеводов в жиры при сахарном диабете);

❖ декомпозиция (фанероз): распад субклеточных структур и веществ (например, белково-липидных комплексов мембран при хронической гипоксии);

❖ инфильтрация клеток и межклеточного вещества органическими и неорганическими соединениями (например, липопротеинами низкой плотности – ЛПНП и Ca2+ интимы артерий при атеросклерозе).

•  Классификация. Основным критерием классификации клеточных дистрофий является преимущественное нарушение метаболизма отдельных классов веществ. В связи с этим критерием различают диспротеинозы (белковые дистрофии), липидозы (жировые дистрофии), диспигментозы(пигментные дистрофии), углеводные и минеральные дистрофии. В отдельную группу выделяюттезаурисмозы (болезни накопления).

❖ Диспротеинозы. Для белковых дистрофий характерно изменение физико-химических свойств клеточных белков. Выделяют зернистую, гиалиново-капельную и гидропическую дистрофии.

❖ Липидозы. Для жировых дистрофий характерно увеличение содержания внутриклеточных липидов и их перераспределение в тканях и органах. Выделяют первичные и вторичные липидозы.

❖ Первичные липидозы наблюдаются, как правило, при генетически обусловленных ферментопатиях (например, ганглиозидозы, цереброзидозы, сфинголипидозы).

❖ Вторичные липидозы развиваются в результате воздействия различных патогенных факторов, таких как гипоксия, тяжёлые инфекции, системные заболевания, отравления (в том числе некоторыми ЛС – цитостатиками, антибиотиками, барбитуратами).

❖ Углеводные дистрофии. Характеризуются нарушениями обмена полисахаридов (гликогена, мукополисахаридов) и гликопротеинов (муцина, мукоидов).

❖ Полисахариды. При нарушениях метаболизма полисахаридов в клетках можно наблюдать уменьшение содержания углеводов (например, гликогена при СД), отсутствие углеводов (агликогенозы; например, при циррозе печени или хронических гепатитах) и накопление избытка углеводов (например, гликогеноз фон Гирке – нефромегалический синдром – гликогенная инфильтрация клеток почек).

 Гликопротеины. Углеводные дистрофии, связанные с нарушением метаболизма гликопротеинов, характеризуются, как правило, накоплением муцинов и мукоидов, имеющих слизистую консистенцию (в связи с этим их называют также слизистыми дистрофиями).

 Диспигментозы. Пигментные дистрофии классифицируют в зависимости от их происхождения (первичные и вторичные), механизма развития, структуры пигмента, проявлений и распро- странённости (местные и системные). Примеры:

 Частицы сажи, угля и т.п. накапливаются в макрофагах лёгких в результате пребывания в загрязнённой атмосфере. В связи с этим ткань лёгких приобретает тёмно-серый цвет.

 Гемосидерин. При гемолизе эритроцитов происходят освобождение Hb, его захват макрофагами печени, селезёнки, красного костного мозга и превращение в пигмент бурого цвета – гемосидерин.

 Минеральные дистрофии. Из минеральных дистрофий наибольшее клиническое значение имеют нарушения обмена кальция, калия, железа, цинка, меди в виде отложения солей этих химических элементов (например, кальцинозы, сидерозы, отложение меди при гепатоцеребральной дистрофии).

 Тезаурисмозы (от греч. thesauros – сокровищница) – болезни накопления промежуточных продуктов обмена углеводов, гликозаминогликанов, липидов и белков. Большинство тезаурисмозов – результат наследственных ферментопатий. В зависимости от типа накапливающихся веществ тезаурисмозы подразделяют на липидные (липидозы), гликогеновые (гликогенозы), аминокислотные, нуклеопротеиновые, мукополисахаридные (мукополисахаридозы), муколипидные (муколипидозы). В отдельные группы выделяют болезни накопления лизосомные и пероксисомные. Примеры:

 Тэя-Сакса болезнь – врождённая недостаточность лизосомальной гексозаминидазы А нейронов – характеризуется накоплением ганглиозидов в цитоплазме нервных клеток.

 Цереброгепаторенальный синдром (синдром Целлвегера) – типичная лизосомная болезнь накопления, развивающаяся вследствие дефектов генов, кодирующих белки пероксисом (в плазме крови и тканях увеличено содержание длинноцепочечных жирных кислот).

 Болезнь Гоше – накопление в фагоцитирующих клетках селезён- ки и красного костного мозга избытка глюкоцереброзидов.

 Гликогенозы – накопление в цитоплазме клеток внутренних органов разных форм аномального гликогена.

Метаплазия

Метаплазия – замещение клеток, свойственных данному органу, нормальными клетками другого типа. Примеры:

♦ Хронические воспалительные заболевания лёгких, дефицит витамина А, курение приводят к появлению среди клеток мерцательного эпителия бронхов островков многослойного плоского эпителия.

♦ При хроническом цервиците возможно замещение однослойного цилиндрического эпителия многослойным плоским.

♦ В результате забрасывания (рефлюкса) кислого содержимого желудка многослойный плоский эпителий слизистой оболочки пищевода замещается однослойным эпителием, характерным для тонкой кишки (пищевод Баррета).

Метаплазию рассматривают как пограничное состояние (на грани нормального). В ряде случаев участки метаплазии становятся диспластическими, что чревато их опухолевой трансформацией.Дисплазии – нарушения дифференцировки клеток, сопровождающиеся стойкими изменениями их структуры, метаболизма и функции (клеточный атипизм). В отличие от метаплазий, для дисплазий характерно появление признаков клеточного атипизма при сохранной структуре и архитектуре ткани. Дисплазии предшествуют опухолевому росту (предопухолевые состояния).

ГИБЕЛЬ КЛЕТКИ

Клетки погибают как в норме, так и в условиях патологии. Различают два принципиально разных варианта смерти клеток – некроз (гибель клетки вследствие её значительного – летального – повреждения) и апоптоз (гибель клетки в результате включения специальной программы смерти).

Некроз

Некроз (от греч. necros – мёртвый) – патологическая гибель клеток в результате действия на них повреждающих факторов.

Некроз является завершающим этапом клеточных дистрофий или следствием прямого действия на клетку повреждающих факторов значительной (разрушающей) силы. Основные звенья патогенеза некроза те же, что и повреждения клеток, но при развитии некроза они максимально интенсифицированы и развиваются на фоне недостаточности адаптивных механизмов (защиты и регенерации повреждённых структур, компенсации нарушенных процессов). О необратимости повреждения клетки свидетельствуют, как правило, разрывы плазмолеммы и выраженные изменения структуры ядра (кариорексис – разрывы ядерной мембраны, фрагментация ядра; кариолизис – распыление хроматина; кариопикноз – сморщивание содержимого ядра).

 Паранекроз и некробиоз. Некрозу предшествуют паранекроз (сходные с некротическими, но ещё обратимые изменения метаболизма и структуры клеток) и некробиоз (совокупность необратимых дистрофических изменений, ведущих к некрозу).

 Лизис и аутолиз. Некротизированные клетки подвергаются деструкции (лизису). Если разложение осуществляется при помощи лизосомных ферментов и свободных радикалов погибших клеток, процесс называется аутолизом.

 Гетеролизис. Разрушение повреждённых и погибших клеток при участии других (неповреждённых) клеток (мигрирующих в зону альтерации фагоцитов, а также попавших в неё микробов) обозначают как гетеролизис.

• Этиология и патогенез некроза. Выделяют несколько основных этиологических факторов некроза – травматические, токсические, трофоневротические, циркуляторные и иммуногенные. Развивающиеся в связи с действием этих факторов ишемия, венозная гиперемия и лимфостаз сопровождаются гипоксией и активацией механизмов повреждения клеток, что приводит, в конце концов, к некрозу.

 Травматический некроз. Является результатом прямого действия на ткань физических (механических, температурных, вибрационных, радиационных) и др. факторов.

 Токсический некроз. Развивается при действии на ткани токсинов, чаще микробных.

 Трофоневротический некроз развивается при нарушении кровоснабжения или иннервации тканей при поражении периферической нервной системы. Примером трофоневротического некроза могут служитьпролежни.

 Иммуногенный некроз – результат цитолиза в ходе аутоагрессивных иммунных и аллергических реакций. Примером может служить фибриноидный некроз при феномене Артюса. Цитолиз с участием T-лимфоцитов-киллеров, NK-клеток и фагоцитов приводит к некрозу участков печени при хроническом гепатите.

 Циркуляторный некроз. Вызван недостаточностью циркуляции крови в кровеносных и лимфатических сосудах в результате их тромбоза, эмболии, длительного спазма, сдавления извне. Недостаточная циркуляция в ткани вызывает её ишемию, гипоксию и некроз.

Апоптоз

Апоптоз (от греч. apoptosis – опадание листьев) – программируемая гибель клетки.

В этом принципиальное отличие апоптоза от некроза. Апоптоз является компонентом многих физиологических процессов, а также наблюдается при адаптации клетки к факторам среды. Биологическая роль апоптоза заключается в поддержании равновесия между процессами пролиферации и гибели клеток. Апоптоз – энергозависимый процесс. Нарушения или блокада апоптоза может стать причиной патологии (роста опухолей, реакций иммунной аутоагрессии, иммунодефицитов и др.).

Примеры апоптоза

♦ Запрограммированная гибель клеток в ходе эмбрионального развития, гистогенеза и морфогенеза органов. Пример: гибель нейробластов (от 25 до 75%) на определённых этапах развития мозга.

♦ Смерть клеток, выполнивших свою функцию (например, иммунокомпетентных клеток по завершении иммунного ответа или эозинофилов после дегрануляции).

♦ Ликвидация аутоагрессивных T-лимфоцитов на определённых этапах развития тимуса или после завершения иммунного ответа.

♦ Старение сопровождается гормонозависимой инволюцией и апоптозом клеток эндометрия, атрезией фолликулов яичников у женщин в менопаузе, а также – ткани простаты и яичек у пожилых мужчин.

♦ Трансфекция – внедрение в клетку фрагмента нуклеиновой кислоты вируса (например, при вирусном гепатите, миокардите, энцефалите, СПИДе) нередко вызывает её апоптоз.

♦ Опухолевый рост закономерно сопровождается апоптозом большого числа трансформированных клеток.

Механизм апоптоза

• В ходе апоптоза выделяют четыре стадии – инициация, программирование, реализации программы, удаление погибшей клетки. Стадия инициации. На этой стадии информационные сигналы воспринимаются клеточными рецепторами и передаются сигналы внутрь клетки.

♦ Трансмембранные сигналы подразделяют на «отрицательные», «положительные» и смешанные. ❖ «Отрицательный» сигнал означает прекращение действия на клетку либо отсутствие в ткани факторов роста или цитокинов, регулирующих деление и созревание клетки, а также гормонов, контролирующих развитие клеток. ❖ «Положительный» сигнал подразумевает воздействие на клетку агента, запускающего программу апоптоза. Например, связывание ФНО с его мембранным рецептором CD95 активирует программу смерти клетки. ❖ Смешанный сигнал – комбинация сигналов первой и второй групп. Так, апоптозу подвергаются лимфоциты, стимулированные митогеном, но не контактировавшие с чужеродным Аг; погибают и лимфоциты, на которые воздействовал Аг, но они не получили других сигналов (например, митогенного).

♦ Среди внутриклеточных стимулов апоптоза наибольшее значение имеют: ❖ избыток H+ и свободных радикалов; ❖ повышенная температура; ❖ внутриклеточные вирусы и ❖ гормоны, обеспечивающие свой эффект через ядерные рецепторы (например, глюкокортикоиды).

•  Стадия программирования (контроля и интеграции процессов апоптоза). Выделяют два варианта реализации стадии программирования: прямая активация эффекторных каспаз и эндонуклеаз (минуя геном клетки) и опосредованная их активация через экспрессию определённых генов.

♦ Прямая передача сигнала. Осуществляется через адапторные белки, гранзимы и цитохром С. Прямая передача сигнала наблюдается в безъядерных клетках (например, эритроцитах).

♦ Опосредованная через геном передача сигнала. На этой стадии специализированные белки либо блокируют потенциально летальный сигнал, либо реализуют сигнал к апоптозу путём активации исполнительной программы.

❖ Белки-ингибиторы апоптоза (продукты экспрессии антиапоптозных генов Bcl-2, Bcl-XL) блокируют апоптоз (например, путём уменьшения проницаемости мембран митохондрий, в связи с чем уменьшается вероятность выхода в цитозоль одного из пусковых факторов апоптоза – цитохрома C).

❖ Белки-промоторы апоптоза (например, белки, синтез которых контролируется генами Bad, Bax,антионкогенами Rb или p53) активируют эффекторные цистеиновые протеазы (каспазы и эндонуклеазы).

•  Стадия реализации программы (исполнительная, эффекторная) заключается в гибели клетки, осуществляемой посредством активации протеаз и эндонуклеаз. Непосредственными исполнителями «умертвления» клетки являются Ca2+,Mg2+-зависимые эндонуклеазы (катализируют распад нуклеиновых кислот) и эффекторные каспазы (расщепляют белки). При этом в клетке формируются и от неё отпочковываются фрагменты, содержащие остатки органелл, цитоплазмы, хроматина и цитолеммы –апоптозные тельца.

•  Стадия удаления фрагментов погибших клеток. На поверхности апоптозных телец имеются лиганды, с которыми взаимодействуют рецепторы фагоцитирующих клеток. Фагоциты обнаруживают, поглощают и разрушают апоптозные тельца (гетеролизис). В результате содержимое разрушенной клетки не попадает в межклеточное пространство и при апоптозе отсутствует воспалительная реакция.

НЕКРОПТОЗ

В последние годы описан еще один вариант смерти клеток, отличающийся как от апоптоза, так и от некроза. Он обозначен как некроптоз. Программа некроптоза может быть стимулирована, подобно апоптозу, лигандами клеточных рецепторов из семейства фактора некроза опухолей (ФНОα). Однако гибель клетки происходит без активации протеаз, относящихся к каспазам (некроптоз развивается при полном подавлении активности каспаз).

Механизм разрушения клетки при некроптозе в большей мере подобен аутолизу. Считают, что некроптоз является одним из своеобразных механизмов гибели нервных клеток при инсультах.

Адаптация клеток

МЕХАНИЗМЫ АДАПТАЦИИ КЛЕТОК К ПОВРЕЖДЕНИЮ

Комплекс адаптивных реакций клеток подразделяют на внутриклеточные и межклеточные.

Внутриклеточные адаптивные механизмы

Внутриклеточные механизмы адаптации реализуются в самих повреж- дённых клетках. К этим механизмам относят: ❖ компенсацию нарушений энергетического обеспечения клетки; ❖ защиту мембран и ферментов клетки; ❖ уменьшение или устранение дисбаланса ионов и воды в клетке; ❖ устранение дефектов реализации генетической программы клетки;

•  компенсацию расстройств регуляции внутриклеточных процессов;

•  снижение функциональной активности клеток; ❖ действие белков теплового шока; ❖ регенерацию; ❖ гипертрофию; ❖ гиперплазию.

•  Компенсация энергетических нарушений обеспечивается активацией процессов ресинтеза и транспорта АТФ, снижением интенсивности функционирования клеток и пластических процессов в них.

•  Устранение дисбаланса ионов и воды в клетке осуществляется путём активации буферных и транспортных клеточных систем.

•  Ликвидация генетических дефектов достигается путём репарации ДНК, устранения изменённых фрагментов ДНК, нормализации транскрипции и трансляции.

•  Компенсация расстройств регуляции внутриклеточных процессов заключается в изменении числа рецепторов, их чувствительности к лигандам, нормализации систем посредников.

•  Снижение функциональной активности клеток позволяет сэкономить и перераспределить ресурсы и, тем самым, увеличить возможности компенсации изменений, вызванных повреждающим фактором. В результате степень и масштаб повреждения клеток при действии

патогенного фактора снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функций.

•  Белки теплового шока (HSP, от Heat Shock Proteins; белки стресса) интенсивно синтезируются при воздействии на клетки повреждающих факторов. Эти белки способны защитить клетку от повреждений и предотвратить её гибель. Наиболее распространены HSP с молекулярной массой 70 000 (hsp70) и 90 000 (hsp90). Механизм действия этих белков многообразен и заключается в регуляции процессов сборки и конформации других белков.

Межклеточные адаптивные механизмы

Межклеточные (системные) механизмы адаптации реализуются непов- реждёнными клетками в процессе их взаимодействия с повреждёнными.

•  Механизмы взаимодействия клеток:

♦ обмен метаболитами, местными цитокинами и ионами; ❖ реализация реакций системы ИБН;

♦ изменения лимфо- и кровообращения;

♦ эндокринные влияния;

♦ нервные воздействия.

•  Примеры

♦ Гипоксия. Уменьшение содержания кислорода в крови и клетках стимулирует активность нейронов дыхательного центра, деятельность сердечно-сосудистой системы, выброс эритроцитов из костного мозга. В результате увеличивается объём альвеолярной вентиляции, перфузия тканей кровью, число эритроцитов в периферической крови, что уменьшает или ликвидирует недостаток кислорода и активирует обмен веществ в клетках.

♦ Гипогликемия. Повреждение клеток в условиях гипогликемии может быть уменьшено в результате инкреции глюкагона, адреналина, глюкокортикоидов, соматотропного гормона (СТГ), способствующих повышению уровня глюкозы в плазме крови и транспорта глюкозы в клетки.

♦ Ишемия. Снижение кровоснабжения артериальной кровью какого-либо участка ткани, как правило, сопровождается увеличением притока крови по коллатеральным (обходным) сосудам, что восстанавливает доставку к клеткам кислорода и субстратов метаболизма.

Повышение устойчивости клеток к повреждению

Мероприятия и средства, повышающие устойчивость интактных клеток к действию патогенных факторов и стимулирующие адаптивные механизмы при повреждении клеток, подразделяют:

♦ по целевому назначению на лечебные и профилактические;

♦ по природе на медикаментозные, немедикаментозные и комбинированные;

♦ по направленности на этиотропные, патогенетические и саногенетические.

Профилактические и лечебные мероприятия

•  Немедикаментозные агенты. Немедикаментозные средства применяют с целью профилактики повреждения клетки. Эти средства повышают устойчивость клеток к ряду патогенных агентов.

Пример. Тренировка организма (по определённой схеме) умеренной гипоксией, стрессорными факторами, физическими нагрузками и охлаждением увеличивает резистентность к значительной гипоксии, ишемии, холоду, инфекционным и другим агентам. В основе увеличения резистентности клеток при тренировке лежит повышение надёжности и мощности регулирующих систем, механизмов энергетического и пластического обеспечения клеток, их компенсаторных, восстановительных и защитных реакций, механизмов синтеза белков и репарации ДНК, процессов формирования субклеточных структур и других изменений.

•  Медикаментозные средства. Лекарственные средства (ЛС) применяют, в основном, для активации адаптивных механизмов уже после воздействия патогенного агента. Большинство ЛС применяют с целью этиотропной или патогенетической терапии.

К основным воздействиям, имеющим целью уменьшить силу патогенного действия на клетки или блокировать механизм развития патологического процесса, относят: снижение степени или устранение нарушений энергетического обеспечения клеток; коррекцию и защиту механизмов трансмембранного переноса, внутриклеточного распределения ионов и контроля объёма клеток; предотвращение повреждения генетического аппарата клетки; ? коррекцию механизмов регуляции и интеграции внутриклеточных процессов.

•  Комбинированные воздействия дают наибольший эффект (как лечебный, так и профилактический).

Общие принципы терапии и профилактики

К общим принципам терапии и профилактики относят этиотропный, патогенетический и саногенетический принципы.

•  Этиотропные воздействия направлены на предотвращение действия (профилактика) или на устранение, прекращение, уменьшение силы или длительности влияния патогенных факторов на клетки, а также устранение условий, способствующих реализации этого действия (лечение).

•  Саногенетические мероприятия имеют целью активацию адаптивных механизмов (компенсации, защиты, восстановления и приспособления клеток) к изменившимся условиям, что предотвращает развитие заболевания (профилактика) или ускоряет выздоровление организма (лечение).

• Патогенетические воздействия направлены на разрыв звеньев патогенеза путём защиты механизмов энергоснабжения клеток, коррекции трансмембранного переноса, внутриклеточного распределения ионов и контроля объёма клеток; предотвращения действия факторов, вызывающих изменения в генетическом аппарате клеток.

ГЛАВА 5. ВОСПАЛЕНИЕ

Воспаление – типовой патологический процесс, направленный на уничтожение, инактивацию или ликвидацию повреждающего агента и восстановление повреждённой ткани.

Воспаление – местный процесс. Однако в его возникновении, развитии и исходах принимают участие практически все ткани, органы и системы организма.

Терминология. Для обозначения воспаления в какой-либо ткани или органе используют их латинское или греческое название и добавляют терминологический элемент «ит» (в сочетании с греко-латинским названием ткани или органа – itis). Например, воспаление кожи – дерматит, печени – гепатит, почки – нефрит, оболочек мозга – менингит, миокарда – миокардит, стенки вены – флебит и т.д.

Этиология

Воспаление – ответ организма на воздействие причины – флогогенного (от греч. phlox, phlogos – пламя) фактора, действующего в определенных условиях.

Причины воспаления

• Природа флогогенного фактора может быть физической, химической или биологической.

 Физические факторы: механическая травма тканей, чрезмерно высокая или низкая температура, воздействие электрического тока или лучистой энергии.

 Химические факторы: органические и неорганические кислоты, щёлочи и соли; ЛС, вводимые в ткани.

 Биологические агенты: инфекционные (вирусы, риккетсии, бактерии, грибы); иммуноаллергические (комплексы Аг-АТ; денатурированные белки и погибшие участки ткани; инфицированные вирусом и опухолевые клетки); токсины насекомых, животных, растений.

•  Происхождение флогогенного фактора. Как повреждающие факторы, флогогенные факторы подразделяют на экзогенные и эндогенные, а в каждой из этих групп выделяют инфекционные и неинфекционные агенты.

•  Выраженность воспалительного эффекта флогогенных агентов зависит не только от их природы и происхождения, но и от интенсивности действия: чем она выше, тем, как правило, более остро протекает воспалительная реакция.

Условия, влияющие на возникновение и течение воспаления

•  Реактивность организма. Воспаление может иметь нормергическое, гиперергическое и гипоергическое течение, в зависимости от реактивности организма и реактивных свойств ткани или органа в данный момент.

•  Регионарные особенности тканей важны для возникновения и характера развития воспаления. Так, хроническая локальная травма тканей, дистрофические процессы, нарушения кровообращения или местного иммунитета облегчают реализацию действия патогенного фактора и нередко усугубляют повреждение тканей в очаге воспаления.

Патогенез

В механизме развития воспаления выделяют несколько компонентов: альтерацию, сосудистые реакции, изменения крово- и лимфообращения, экссудацию жидкости и выход форменных элементов крови в ткань, фагоцитоз и пролиферацию.

АЛЬТЕРАЦИЯ

Альтерация (от лат. alteratio – изменение, повреждение) как компонент механизма развития воспаления включает изменения: клеточных и внеклеточных структур, обмена веществ, физико-химических свойств, а также образование и реализацию эффектов медиаторов воспаления. При этом различают зоны первичной и вторичной альтерации.

•  Первичная альтерация реализуется за счёт действия патогенного агента в зоне его внедрения, что сопровождается грубыми, часто необратимыми изменениями.

•  Вторичная альтерация вызывается и патогенным агентом и, в основном, продуктами первичной альтерации. Позднее вторичная альтерация приобретает относительно самостоятельный характер. Объём зоны вторичного повреждения всегда больше, чем первичного, а длительность может варьировать от нескольких часов до нескольких лет.

Изменение структур

Степень изменений клеточных и неклеточных структур в очаге воспаления колеблется от минимальных до их разрушения и некроза. Причиной альтерации структур являются на начальном этапе воспаления прямое действие флогогенного фактора, а затем – расстройства обмена веществ, физико-химические, микроциркуляторные и регуляторные расстройства (подробнее причины повреждения структур см. в Главе 4 «Патология клетки»).

Изменения обмена веществ

Биологический смысл изменений обмена веществ заключается в энергетическом и пластическом обеспечении процессов, протекающих в очаге воспаления. На начальном этапе воспаления в тканях преобладают реакции катаболизма, а при активации процессов пролиферации начинают доминировать анаболические реакции. Изменения метаболизма в существенной мере регулируются медиаторами воспаления. В очаге воспаления, а нередко и в организме в целом, происходит перестройка всех видов обмена веществ: углеводного, белкового, жирового и водно-солевого, что приводит к физико-химическим изменениям в очаге воспаления.

•  Углеводы

♦ Активируются гликогенолиз и гликолиз, обеспечивающие увеличение выработки макроэргических соединений.

♦ Под влиянием разобщителей окисления и фосфорилирования нарушается образование АТФ в цикле Кребса и энергия выделяется в виде тепла.

♦ Гликолиз в условиях гипоксии в очаге воспаления переходит на анаэробный путь, следствием чего является накопление избытка лактата и пирувата, которые формируют метаболический ацидоз.

♦ Возобновление оксигенации тканей, как правило, сопровождается нормализацией энергетического обеспечения клеточных процессов.

•  Липиды

♦ Усиливаются липолиз (он сопровождается накоплением свободных ВЖК) и деструкция липидов за счёт интенсификации реакций СПОЛ (с образованием перекисей и гидроперекисей липидов, кетокислот).

♦ В связи с накоплением в клетках свободных ВЖК отмечаются их разобщающий эффект и снижение эффективности тканевого дыхания в митохондриях. ВЖК обладают также детергентным действием (см. раздел «Повреждение мембран», глава 4).

♦ Накопление избытка кетокислот (ацетоуксусной, β-оксимасляной, β-кетоглутаровой и других) вследствие нарушения окисления ВЖК обусловливает ацидоз и вторичную альтерацию в очаге воспаления.

♦ Образующаяся в избытке арахидоновая кислота служит субстратом для образования Пг, тромбоксанов и лейкотриенов.

•  Белки

♦ Активируется протеолиз, продукты которого служат субстратом синтеза клеточных компонентов взамен повреждённых.

♦ Развиваются иммунные (в том числе – иммунопатологические) реакции (в связи с денатурацией белков как собственных погибших клеток, так и флогогенного агента). Включение клеточных и гуморальных механизмов иммунитета обеспечивает обнаружение, деструкцию и элиминацию антигенно чужеродных структур.

•  Ионы и вода

♦ Расстраивается энергетическое обеспечение селективного переноса катионов и снижается активность катион-зависимых мембранных АТФаз (?+,К+-АТФазы, Са2+Mg2+-АТФазы). Это вызывает нарушение формирования МП и ПД, развитие стойкой деполяризации мембран возбудимых клеток (например, кардиомиоцитов и нейронов).

♦ Нарушается вне- и внутриклеточное соотношение между отдельными ионами. Происходит потеря клеткой К+, Mg2+ и накопление их в межклеточной жидкости. В клетку поступают Na+ и Са2+.

♦ Высвобождается дополнительное количество катионов (К+, Na+, Са2+, железа, цинка) при гидролизе солей и поступлении большого количества Са2+ из повреждённых внутриклеточных депо (митохондрий и цистерн эндоплазматической сети).

♦ Значительно увеличивается осмотическое давление внутри клеток и их органелл, что сопровождается перерастяжением и разрывом их мембран.

Физико-химические изменения

•  Метаболический ацидоз в очаге воспаления обусловлен накоплением избытка различных кислот: молочной, пировиноградной, аминокислот, ВЖК и КТ.

♦ Механизмы развития: нарушение удаления из очага воспаления образующихся в большом количестве кислых продуктов метаболизма. Это вызывает истощение буферных систем (бикарбонатной, фосфатной, белковой) клеток и межклеточной жидкости.

♦ Последствия:

? Повышение проницаемости мембран, в том числе лизосом, что приводит к выходу гидролаз в цитозоль и межклеточное вещество.

? Повышение проницаемости стенок сосудов за счёт усиления неферментного и ферментного гидролиза компонентов межклеточного матрикса, включая базальные мембраны.

? Формирование ощущения боли в очаге воспаления в связи с раздражением и повреждением чувствительных нервных окончаний в условиях избытка Н+.

? Изменения чувствительности рецепторов клеток (в том числе – стенок сосудов) к регуляторным факторам (нейромедиаторам, гормонам, медиаторам воспаления), что сопровождается расстройством регуляции тонуса сосудистой стенки.

•  Гиперосмия – повышенное осмотическое давление в регионе воспаления. Обусловлено накоплением большого количества ионов и низкомолекулярных соединений.

♦ Механизмы развития: повышенное ферментативное и неферментативное разрушение макромолекул, усиленный в условиях ацидоза гидролиз солей и выделение осмотически активных соединений из повреждённых клеток.

♦ Последствия: гипергидратация очага воспаления, стимуляция эмиграции лейкоцитов, изменение тонуса стенок сосудов, формирование чувства боли.

•  Гиперонкия – повышенное онкотическое давление в ткани при ее воспалении.

♦ Механизмы развития: увеличение концентрации белка в очаге воспаления в связи с усилением ферментативного и неферментативного гидролиза пептидов и выход белков (в основном – альбуминов) из крови в очаг воспаления в связи с повышением проницаемости сосудистой стенки.

♦ Последствия: развитие отёка в очаге воспаления.

•  Изменение поверхностного заряда клеток (как правило, снижение). Обусловлено нарушением водно-электролитного баланса в воспаленной ткани.

♦ Механизмы развития: нарушение энергообеспечения трансмембранного переноса ионов и развитие электролитного дисбаланса.

♦ Последствия: изменение порога возбудимости клеток, потенцирование миграции фагоцитов за счёт электрокинеза; стимуляция кооперации клеток в связи со снижением величины отрицательного поверхностного их заряда, нейтрализацией его или даже перезарядкой.

•  Изменения коллоидного состояния межклеточного вещества и гиалоплазмы клеток в очаге воспаления.

♦ Механизмы развития:

? Ферментативный и неферментативный гидролиз макромолекул (гликозаминогликанов, белков, протеогликанов).

? Фазовые изменения микрофиламентов, облегчающие переход их состояния из геля в золь и наоборот.

♦ Последствия (основное): увеличение тканевой проницаемости.

•  Уменьшение поверхностного натяжения клеточных мембран. Обусловлено изменениями структуры молекул плазмолеммы.

♦ Механизмы развития: воздействие на клеточные мембраны значительного количества поверхностноактивных веществ (фосфо-

липидов, ВЖК, К+, Са2+).

♦ Последствия: облегчение подвижности клетки и потенцирование адгезии клеток при фагоцитозе.

Медиаторы воспаления

Медиаторы воспаления – биологически активные вещества, под влиянием которых осуществляются закономерное развитие и исходы воспаления, формируются его местные и общие признаки.

Выделяют две группы медиаторов воспаления: клеточные и плазменные.

Клеточные медиаторы воспаления

Основные группы клеточных медиаторов воспаления включают: биогенные амины, пептиды и белки, оксид азота, производные жирных кислот и липидов, нуклеотиды и нуклеозиды. Их источниками являются тучные клетки, нейтрофильные и базофильные гранулоциты, тромбоциты и ряд других клеток в очаге воспаления.

•  Биогенные амины. Важнейшими представителями являются гистамин и серотонин.

♦ Гистамин, воздействуя на Н2-рецепторы клеток-мишеней, вызывает дилатацию сосудов микроциркуляторного русла и повышает проницаемость венул, что способствует экссудации. Взаимодействуя с H1-рецепторами, гистамин обусловливает: ощущения боли, жжения, зуда, напряжения.

♦ Серотонин также повышает сосудистую проницаемость и активирует сокращение ГМК венул (что способствует развитию венозной гиперемии), приводит к формированию чувства боли, стимулирует тромбообразование.

•  Пептиды и белки

♦ Нейропептиды. Из числа нейропептидов при воспалении наиболее значимую роль выполняет вещество P.

♦ Цитокины регулируют пролиферативную активность, дифференцировку и фенотип клеток-мишеней. К цитокинам отнесены факторы роста, интерлейкины (ИЛ), фактор некроза опухоли

(ФНО), колониестимулирующие факторы, интерфероны (ИФН) и хемокины.

Общий современный термин для всего класса – цитокины, устаревшие наименования подклассов: лимфокины и монокины.

 Лейкокины – общее название для различных биологически активных веществ (БАВ), образуемых лейкоцитами, но не относящихся к иммуноглобулинам (Ig) и цитокинам. К группе лейкокинов относятся белки острой фазы, катионные белки, а также фибронектин.

 Ферменты. В очаге воспаления обнаруживаются ферменты всех основных групп. Их основным источником являются нейтрофилы и другие фагоциты. В начале воспаления ферменты вызывают разрыхление соединительнотканных муфт вокруг сосудов и разрушение межклеточного вещества сосудистых стенок, способствуя вазодилатации и повышению проницаемости сосудов. На поздних стадиях воспаления благодаря ферментам происходит очищение очага воспаления от погибших клеток и тканей, а также реализуются пролиферативные процессы.

•  Оксид азота (эндотелием освобождаемый фактор вазодилатации) – важный медиатор воспаления.

•  Липидные медиаторы воспаления

 Производными арахидоновой кислоты являются простагландины, тромбоксаны и лейкотриены. Арахидоновая кислота входит в состав фосфолипидов клеточных мембран, откуда и освобождается под влиянием фосфолипаз. Дальнейшие превращения этой кислоты происходят либо по циклооксигеназному (с образованием простагландинов и тромбоксанов), либо по липооксигеназному пути (с образованием лейкотриенов).

? Простагландины обладают широким спектром действия, в том числе повреждают стенки сосудов микроциркуляторного русла и повышают их проницаемость, усиливают хемотаксис и способствуют пролиферации фибробластов. Пг снижают порог болевой чувствительности и способствуют развитию лихорадки.

? Тромбоксаны вызывают вазоконстрикцию, способствуют агрегации клеток крови, стимулируют тромбообразование.

? Лейкотриены вызывают спазм ГМК стенок сосудов, бронхиол и кишечника (длительность эффекта лейкотриенов весьма велика), проявляют положительный хемотаксический эффект по отношению к фагоцитам и повышают проницаемость мембран.

 Фактор активации тромбоцитов образуется из мембранных фосфолипидов и является наиболее сильным сосудосуживающим веществом.

 Липопероксиды – продукты СПОЛ. Они дестабилизируют мембраны лизосом, способствуя высвобождению ферментов из них, и определяют эффективность заключительных этапов фагоцитоза.

•  Нуклеотиды и нуклеозиды

 АТФ обеспечивает энергетическую «поддержку» клеток и пластических процессов в них в очаге воспаления.

 АДФ стимулирует адгезию, агрегацию и агглютинацию форменных элементов крови. Это вызывает тромбообразование, формирование сладжа, нарушение крово- и лимфотока в сосудах микроциркуляторного русла.

 Аденозин, высвобождающийся из клеток, оказывает существенное сосудорасширяющее действие с развитием артериальной гиперемии.

Плазменные медиаторы воспаления

Плазменные медиаторы воспаления, так же как и клеточные, вырабатываются клетками и высвобождаются ими в неактивном состоянии. Они появляются при активации трёх систем крови – кининовой, комплемента и гемостаза. Все компоненты этих систем находятся в крови в виде предшественников и становятся активными после воздействия на них клеточных медиаторов воспаления.

•  Медиаторы кининовой системы. Основное значение при воспалении имеют брадикинин и калликреин.

 Брадикинин усиливает сосудистую проницаемость, обусловливает чувство боли, обладает выраженным гипотензивным действием.

 Калликреин вызывает хемотаксис лейкоцитов, но главное его значение – активация фактора Хагемана.

•  Медиаторы системы гемостаза: факторы свертывающей, противосвертывающей и фибринолитической систем. Первично активируется фактор Хагемана. Он инициирует свёртывание белков крови, повышает проницаемость стенок сосудов, усиливает миграцию нейтрофилов и агрегацию тромбоцитов.

•  Система комплемента состоит из группы специализированных белков плазмы крови, вызывающих лизис бактерий и клеток. Кроме того, некоторые компоненты комплемента, прежде всего C3b и C5b, повышают проницаемость стенок сосудов, усиливают хемотаксическую активность нейтрофилов и макрофагов.

Антимедиаторы воспаления. На всех этапах развития воспаления образуются и действуют вещества, предупреждающие избыточное накопление или прекращающие действие медиаторов, которые в совокупности могут быть объединены в систему антимедиаторов воспаления. Важнейшими антимедиаторами являются ферменты. Так, гистаминаза разрушает гистамин, карбоксипептидазы – кинины, эстеразы – фракции комплемента, простагландиндегидрогеназа – Пг. Большое значение имеют гуморальные влияния. Так, образующийся в гепатоцитах один из видов антитрипсина ингибирует ряд протеаз, участвующих в воспалении, что тормозит образование кининов. Глюкокортикоиды ослабляют сосудистые реакции, стабилизируя мембраны сосудов, уменьшают экссудацию и эмиграцию лейкоцитов, а также ослабляют фагоцитоз. Благодаря наличию антимедиаторов, воспаление прекращается после устранения или инактивации повреждающего агента и репарации повреждённых тканей.

СОСУДИСТЫЕ РЕАКЦИИ, ИЗМЕНЕНИЯ КРОВО-

И ЛИМФООБРАЩЕНИЯ. ЭКССУДАЦИЯ ЖИДКОСТИ.

ВЫХОД ФОРМЕННЫХ ЭЛЕМЕНТОВ КРОВИ В ТКАНЬ

Этот компонент воспаления включает следующие процессы:

♦ изменение тонуса стенок и просвета сосудов;

♦ нарушение гемо- и лимфодинамики;

♦ изменение реологических свойств крови;

♦ увеличение сосудистой проницаемости;

♦ собственно процесс экссудации жидкости из микрососудов;

♦ миграцию в очаг воспаления лейкоцитов и фагоцитоз, выход в ткань тромбоцитов и эритроцитов.

Изменение тонуса стенок и просвета сосудов. Нарушения регионарной гемодинамики

Просвет сосудов, крово- и лимфообращение в очаге воспаления изменяются с момента возникновения и в течение всего процесса воспаления. При этом, в разных его участках и на разных этапах оно, как правило, имеет разный характер.

♦ Ишемия является результатом спазма мышц артериол и прекапилляров за счёт рефлекторного (в ответ на боль) выделения нейромедиаторов (норадреналин). Внешние проявления: бледность, некоторое уменьшение объёма и температуры тканей. Продолжительность – от нескольких секунд до нескольких минут, так как норадреналин быстро расщепляется ферментативными системами.

♦ Артериальная гиперемия обусловлена снижением тонуса мышц стенок и расширением артериол под воздействием медиаторов воспаления. Увеличение кровоснабжения является важным защитным механизмом и способствует энергетическому обеспечению воспаления. Внешние проявления: покраснение, увеличение тургора, незначительное увеличение объёма и температуры тканей.

♦ Венозная гиперемия обусловлена нарушением оттока крови. Этому способствует сдавление венул и капилляров отёчной периваскулярной тканью, набухание эндотелия и изменение реологических свойств крови. Венозная гиперемия способствует повышению гидростатического давления в сосудах микроциркуляторного русла и фильтрации в ткани жидкой части крови, а следовательно, – усугублению отёка.

♦ Стаз – временное прекращение тока крови и лимфы в сосудах микроциркуляторного русла. Развивается вследствие значительного сдавления венул отёчной тканью и развитием в них сладж-феномена.

♦ Нормализация регионарного кровотока происходит по мере завершения воспаления.

Изменение реологических свойств крови. В сосудах воспалённой ткани происходит сгущение крови, краевое стояние лейкоцитов, образование сладжа и клеточных агрегатов, что снижает текучесть крови и способствует тромбозу мелких сосудов.

Увеличение сосудистой и тканевой проницаемости

Определяющим фактором экссудации жидкости за пределы сосудов при воспалении является повышение проницаемости сосудистой стенки, с чем связано образование экссудата. На проницаемость стенки сосудов основное влияние оказывают медиаторы воспаления. Повышение сосудистой проницаемости способствует межэндотелиальному и трансэндотелиальному транспорту плазмы и выходу форменных элементов крови из сосудов.

♦ Межэндотелиальные щели образуются за счёт сокращения актомиозина в эндотелиальных клетках и изменения в них структуры цитоскелета.

♦ Трансэндотелиальный транспорт осуществляется с помощью везикул и микроканалов.

Увеличение тканевой проницаемости обусловлено также изменениями коллоидного состояния межклеточного вещества.

ЭКССУДАЦИЯ ЖИДКОСТИ И ВЫХОД ФОРМЕННЫХ ЭЛЕМЕНТОВ

КРОВИ В ОЧАГ ВОСПАЛЕНИЯ

Экссудация (от лат. exsudatum – потеть, пропотевать) – процесс выхода плазмы и форменных элементов крови из сосудов микроциркуляторного русла в ткани и полости тела с образованием экссудата.

Экссудат – жидкость, образующаяся при воспалении и содержащая большое количество белка и форменные элементы крови (в основном лейкоциты).

В организме может образовываться также невоспалительная жидкость- транссудат. Он отличается от экссудата низким содержанием белка, лейкоцитов и других форменных элементов крови.

Причины экссудации

•  Основная причина плазморрагии (пассивного выхода плазмы крови в интерстиций) – увеличение сосудистой проницаемости и повышение гидростатического давления крови в сосудах микроциркуляторного русла.

•  Основная причина лейкоцитарной инфильтрации ткани – хемо- и электротаксис лейкоцитов.

Виды экссудата. Выделяют несколько видов экссудата: серозный, фибринозный, гнойный, гнилостный, геморрагический и катаральный. Вид экссудата определяет название формы острого экссудативного воспаления.

Значение экссудации. В очаге воспаления процесс экссудации имеет двоякое биологическое значение: адаптивное и патогенное.

•  Адаптивное значение заключается в фиксации в очаге воспаления флогогена и создании оптимальных условий его инактивации и элиминации.

•  Патогенное значение:

♦ сдавление и смещение органов и тканей экссудатом;

♦ возможно распространение воспалительного процесса в соседние ткани или биологические жидкости (в лимфу, кровь, ликвор и др.);

♦ образование очагов деструкции ткани при гнойном воспалении.

Эмиграция лейкоцитов

Эмиграция лейкоцитов – активный процесс их выхода из просвета сосудов микроциркуляторного русла в межклеточное пространство. Спустя 1-2 ч после воздействия на ткань флогогенного фактора в очаге воспаления обнаруживается большое число эмигрировавших нейтрофилов и других гранулоцитов, позднее – через 15-20 и более часов – моноцитов, а затем и лимфоцитов.

Процесс эмиграции последовательно проходит этапы роллинга (краевого стояния – «качения») лейкоцитов, их адгезии к эндотелию и проникновения через сосудистую стенку, а также – направленного движения лейкоцитов в очаге воспаления (рис. 5-1).

Функции лейкоцитов при воспалении

•  Фагоцитоз.

•  Синтез и выделение медиаторов воспаления.

•  Презентация антигена лимфоцитам. Эта функция фагоцитов реализуется за счёт процессинга (поглощение и трансформация антигенных структур) и представления Аг клеткам иммунной системы (передача информации об Аг лимфоцитам).

Рис. 5-1. Этапы миграции лейкоцитов через сосудистую стенку (на примере нейтрофилов). [по 4].

Позднее значительная часть лейкоцитов, мигрировавших в очаг воспаления, подвергается дистрофическим изменениям и превращается в «гнойные тельца» или подвергается апоптозу. Часть лейкоцитов, выполнив свои функции, возвращается в сосудистое русло и циркулирует в крови.

При значительном повышении проницаемости стенок сосудов микроциркуляторного русла в очаг воспаления «пассивно» выходят также эритроциты и тромбоциты.

ФАГОЦИТОЗ

Фагоцитоз (греч. phagein – поедать, пожирать + греч. kytos – клетка + греч. osis – процесс, состояние) – активный биологический процесс, заключающийся в распознавании, поглощении и внутриклеточной деструкции чужеродного материала специализированными клетками – фагоцитами: микрофагами (полиморфноядерными лейкоцитами) и макрофагами.

В ходе фагоцитоза выделяют несколько основных стадий (рис. 5-2).

Рис. 5-2. Стадии фагоцитоза: 1 – адгезия частицы (например, бактерии) с помощью Fc-рецептора мембраны фагоцита; 2 – погружение адгезированной частицы в фагоцит и образование фагосомы; 3 – приближение и присоединение к фагосоме лизосом; 4 – слияние мембран фагосомы и лизосом с образованием фаголизосомы; 5 – разрушение поглощённой частицы. [по 4].

•  Распознавание фагоцитом объекта поглощения и адгезия к нему происходит в несколько этапов:

♦ Обнаружение поверхностных детерминант объекта фагоцитоза.

♦ Опсонизация объекта фагоцитоза.

♦ Адгезия фагоцита к объекту фагоцитоза. Этот процесс реализуется с участием рецепторов лейкоцита FcyR (при наличии у объекта соответствующего лиганда) и молекул адгезии (при отсутствии лиганда, например, у неклеточных частиц).

•  Поглощение объекта фагоцитом с последующим образованием фаголизосомы. Поглощенный материал погружается в клетку в составе фагосомы – пузырька, образованного плазматической мембраной. К фагосоме приближаются лизосомы, мембраны фагосомы и лизосом сливаются, и образуется фаголизосома.

•  Внутриклеточное разрушение объекта фагоцитоза реализуется в результате активации двух сложных механизмов: кислородзависимой и кислороднезависимой цитотоксичности фагоцитов.

♦ Кислородзависимая цитотоксичность играет ведущую роль в деструкции объекта фагоцитоза. Она сопряжена со значительным повышением интенсивности метаболизма с участием кислорода (респираторный взрыв).

♦ Кислороднезависимые механизмы обусловлены действием лизосомальных ферментов фагоцита.

Незавершённый фагоцитоз. При незавершённом фагоцитозе поглощён- ные фагоцитами микроорганизмы не разрушаются. Это способствует персистенции и распространению инфекции в организме. Причины незавершённого фагоцитоза:

•  Мембрано- и ферментопатии лизосом фагоцита.

•  Повышенная резистентность микробов к ферментам фагоцита.

•  Способность некоторых микробов быстро покидать фагосомы и персистировать в цитоплазме фагоцита (риккетсии, хламидии).

•  Недостаточный эффект гормонов – регуляторов процесса фагоцитоза.

ПРОЛИФЕРАЦИЯ

Пролиферация – важный компонент механизма развития воспалительного процесса и завершающая его стадия – характеризуется увеличением числа стромальных и паренхиматозных клеток, а также образованием межклеточного вещества в очаге воспаления. Эти процессы направлены на регенерацию или замещение разрушенных тканевых элементов.

♦ При благоприятном течении воспаления наблюдается полная регенерация ткани – восполнение её погибших и восстановление обратимо повреждённых структурных элементов (реституция).

♦ При значительном разрушении участка ткани или органа на месте дефекта паренхиматозных клеток образуется вначале грануляционная ткань, а по мере её созревания – рубец, т.е. наблюдается неполная регенерация.

Неспецифическое и специфическое воспаление

Неспецифическое воспаление не имеет специфических черт и может вызываться различными флогогенными агентами. Специфическое воспаление имеет, наряду с общими, специфические черты и вызывается определённым возбудителем. Выделяют несколько специфических воспалительных заболеваний: туберкулёз, сифилис, лепра, склерома и др.

ОСТРОЕ И ХРОНИЧЕСКОЕ ВОСПАЛЕНИЕ

По течению различают острое и хроническое воспаление.

Острое воспаление

Острое воспаление характеризуется:

•  Интенсивным течением и завершением воспаления, как правило, в течение одной или двух недель.

•  Наиболее часто в очаге воспаления преобладают процессы экссудации, и такое воспаление называют «экссудативным».

ЭКССУДАТИВНОЕ ВОСПАЛЕНИЕ

Экссудативное воспаление характеризуется образованием экссудата, состав которого определяется, главным образом, причиной воспаления и реакцией организма на повреждение.

•  Серозное воспаление характеризуется формированием мутного экссудата, который содержит небольшое количество лейкоцитов, слущенных эпителиальных клеток и до 2-2,5% белка. Примеры: воспаление при крапивнице или пузырчатке.

•  Фибринозное воспаление характеризуется образованием экссудата, содержащего, помимо лейкоцитов, большое количество фибриногена, который выпадает в тканях в виде нитей фибрина. Фибринозный экссудат пропитывает погибшие ткани, образуя светло-серую плён- ку. В зависимости от структуры эпителиальных покровов и особенностей подлежащей соединительной ткани выделяют два вида фибринозного воспаления:

 Крупозное воспаление. На однослойном эпителиальном покрове и плотной базальной мембране образуется тонкая, легко снимающаяся фибринозная плёнка. Такое фибринозное воспаление называется крупозным. Оно встречается на слизистых оболочках трахеи и бронхов, серозных оболочках.

 Дифтеритическое воспаление. Многослойный плоский неороговевающий эпителий, переходный эпителий и рыхлая широкая соединительнотканная основа органа способствуют развитию глубокого некроза и формированию толстой, трудно снимающейся фибринозной плёнки, после удаления которой остаются глубокие язвы. Такое фибринозное воспаление называется дифтеритическим. Оно развивается в зеве, на слизистых оболочках пищевода, матки и влагалища, кишечника и желудка, мочевого пузыря.

•  Гнойное воспаление характеризуется образованием гнойного экссудата. Он представляет собой сливкообразную массу, состоящую из детрита, погибших форменных элементов крови (от 17% до 29%),

микробов. Гной имеет специфический запах, синевато-зеленоватую окраску с различными оттенками, содержание белка в нём составляет 3-7% и более. Основными формами гнойного воспаления являются абсцесс, флегмона, эмпиема, гнойная рана.

 Абсцесс – отграниченное гнойное воспаление с образованием полости, заполненной гнойным экссудатом.

 Флегмона – разлитое гнойное воспаление, при котором экссудат пропитывает и расслаивает ткани.

 Эмпиема – очаговое гнойное воспаление полостей тела или полых органов.

 Гнойная рана – возникает либо вследствие нагноения травматической раны, либо в результате вскрытия во внешнюю среду очага гнойного воспаления и образования раневой поверхности.

•  Гнилостное воспаление (ихорозное) характеризуется выраженным некрозом тканей.

•  Геморрагическое воспаление сопровождается особенно высокой проницаемостью сосудов микроциркуляторного русла, диапедезом эритроцитов и их примесью к уже имеющемуся экссудату (серозногеморрагическое, гнойно-геморрагическое воспаление).

•  Катаральное воспаление характеризуется примесью слизи к любому экссудату.

ПРИЗНАКИ ОСТРОГО ВОСПАЛЕНИЯ

Признаки острого воспаления подразделяют на местные и общие (системные).

•  Местные признаки острого воспаления. В очаге острого воспаления наблюдаются:  покраснение – rubor;  припухлость – tumor;

 боль – dolor;  жар (повышение температуры в очаге воспаления) – calor;  нарушение функции – functio laesa.

•  Системные изменения при остром воспалении. Вследствие резорбции из очага воспаления в кровь медиаторов воспаления и продуктов распада ткани развивается ряд системных эффектов: лейкоцитоз, лихорадка, диспротеинемия, увеличение скорости оседания эритроцитов, изменение гормонального статуса организма, аллергизация организма.

Таким образом, воспаление, являясь местным процессом, отражает общую, системную реакцию организма на действие флогогенного агента.

Хроническое воспаление

Хроническое воспаление может быть первичным и вторичным.

•  Если воспаление после острого периода приобретает затяжной характер, то оно обозначается как «вторично хроническое».

•  Если воспаление изначально имеет персистирующее (вялое и длительное) течение, его называют «первично хроническим».

Проявления хронического воспаления. Для хронического воспаления характерен ряд признаков: развитие гранулём, формирование капсул, некроз, инфильтрация ткани моноцитами и лимфоцитами. Активация макрофагов иммунными и неиммунными факторами (рис. 5-3) обусловливает дополнительное повреждение тканей и развитие фиброза. При хроническом воспалении часто преобладает процесс пролиферации, и такое воспаление называют пролиферативным. Причины хронического воспалениямногообразны:

•  Различные формы фагоцитарной недостаточности.

•  Длительный стресс и другие состояния, сопровождающиеся повышенной концентрацией в крови катехоламинов и глюкокортикоидов. Указанные группы гормонов подавляют процессы пролиферации, созревания фагоцитов, потенцируют их разрушение.

Рис. 5-3. Роль активированных макрофагов в развитии и течении хронического воспаления. Активированные макрофаги синтезируют арахидоновую кислоту, тромбоцитарные факторы роста и другие медиаторы воспаления, потенцирующие вторичную альтерацию. В развитии повреждения тканей принимают участие токсические метаболиты кислорода, протеазы, факторы хемотаксиса нейтрофилов, факторы свёртывания, метаболиты арахидоновой кислоты и оксид азота. Для развития неиммунной активации важны эндотоксины, фибронектин, химические медиаторы воспаления. Развитие фиброза зависит от перестройки коллагенов под влиянием разных факторов роста и цитокинов, а также от факторов ангиогенеза. [по 4].

• Взаимодействие лимфоцитов и макрофагов, в избытке инфильтрирующих ткани при хроническом воспалении, с высвобождением большого количества повреждающих медиаторов (рис. 5-4).

Рис. 5-4. Взаимодействие макрофагов и лимфоцитов при хроническом воспалении. Активированные лимфоциты и макрофаги оказывают влияние друг на друга, а также выделяют медиаторы воспаления, которые повреждают окружающие клетки. TNF – фактор некроза опухоли. [по 4].

•  Повторное повреждение ткани или органа (например, лёгких компонентами пыли), сопровождающееся образованием чужеродных Аг и развитием иммунопатологических реакций.

•  Особенности микроорганизмов (устойчивость к действию факторов системы иммунобиологического надзора организма, мимикрия, образование L-форм).

Принципы терапии воспаления

Этиотропное лечение подразумевает устранение, прекращение, уменьшение силы и длительности действия на ткани и органы флогогенных факторов. С этой целью применяют, например, антибактериальные препараты.

Патогенетическое лечение имеет целью блокирование механизма развития воспаления. При этом воздействия направлены на разрыв звеньев патогенеза воспаления, лежащих в основе, главным образом, процессов альтерации и экссудации. Для этого используют, например,

антигистаминные препараты, глюкокортикоиды, ингибиторы циклооксигеназ.

Саногенетическая терапия направлена на активацию общих и местных механизмов компенсации, регенерации, защиты, восстановления и устранения изменений в тканях и клетках, вызванных флогогенным агентом.

Симптоматическое лечение. Мероприятия, направленные на предупреждение или устранение неприятных, тягостных, усугубляющих состояние пациента симптомов (с этой целью применяют, например, анестезирующие ЛС, вещества, способствующие нормализации функций органов и физиологических систем).

ГЛАВА 6. НАРУШЕНИЯ ТЕПЛОВОГО ОБМЕНА

При нарушении теплового баланса организма развиваются либо гипертермические, либо гипотермические состояния. Гипертермические состояния характеризуются повышением, а гипотермические – понижением температуры тела выше и ниже нормы, соответственно.

ГИПЕРТЕРМИЧЕСКИЕ СОСТОЯНИЯ

К гипертермическим состояниям относятся перегревание организма (или собственно гипертермия), тепловой удар, солнечный удар, лихорадка, различные гипертермические реакции.

Собственно гипертермия

Гипертермия – типовая форма расстройства теплового обмена, возникающая в результате, как правило, действия высокой температуры окружающей среды и нарушения теплоотдачи.

ЭТИОЛОГИЯ Причины гипертермии

Выделяют внешние и внутренние причины.

•  Высокая температура окружающей среды может воздействовать на организм:

♦ в жаркое летнее время;

♦ в производственных условиях (на металлургических и литейных заводах, при стекло- и сталеварении);

♦ при ликвидации пожаров;

♦ при длительном нахождении в горячей бане.

•  Снижение теплоотдачи является следствием:

♦ первичного расстройства системы терморегуляции (например, при повреждении соответствующих структур гипоталамуса);

♦ нарушения отдачи тепла в окружающую среду (например, у тучных людей, при снижении влагопроницаемости одежды, высокой влажности воздуха).

Факторы риска

♦ Воздействия, повышающие теплопродукцию (интенсивная мышечная работа).

♦ Возраст (легче развивается гипертермия у детей и стариков, у которых понижена эффективность системы терморегуляции).

♦ Некоторые заболевания (гипертоническая болезнь, сердечная недостаточность, эндокринопатии, гипертиреоз, ожирение, вегетососудистая дистония).

♦ Разобщение процессов окисления и фосфорилирования в митохондриях клеток посредством экзогенных (2,4-динитрофенол, дикумарол, олигомицин, амитал) и эндогенных агентов (избыток тиреоидных гормонов, катехоламинов, прогестерона, ВЖК и митохондриальные разобщители – термогенины).

ПАТОГЕНЕЗ ГИПЕРТЕРМИИ

При действии гипертермического фактора в организме включается триада экстренных адаптивных механизмов: 1) поведенческой реакции («уход» от действия теплового фактора); 2) интенсификации теплоотдачи и снижение теплопродукции; 3) стресса. Недостаточность защитных механизмов сопровождается перенапряжением и срывом системы терморегуляции с формированием гипертермии.

В ходе развития гипертермии выделяют две основные стадии: компенсации (адаптации) и декомпенсации (дезадаптации) механизмов терморегуляции организма. Отдельные авторы выделяют финальную стадию гипертермии – гипертермическую кому. Стадия компенсации характеризуется активацией экстренных механизмов адаптации к перегреванию. Эти механизмы направлены на увеличение теплоотдачи и снижение теплопродукции. За счёт этого температура тела остаётся в пределах верхней границы нормального диапазона. Наблюдаются ощущение жара, головокружение, шум в ушах, мелькание «мушек» и потемнение в глазах. Может развиваться тепловой неврастенический синдром,характеризующийся падением работоспособности, вялостью, слабостью и апатией, сонливостью, гиподинамией, нарушениями сна, раздражительностью, головными болями.

Стадия декомпенсации

Стадия декомпенсации характеризуется срывом и неэффективностью как центральных, так и местных механизмов терморегуляции, что и приводит к нарушению температурного гомеостаза организма. Температура внутренней среды повышается до 41-43 °C, что сопровождается изменениями метаболизма и функций органов и их систем.

♦ Потоотделение уменьшается, нередко отмечается лишь скудный липкий пот; кожа становится сухой и горячей. Сухость кожи считают важным признаком декомпенсации гипертермии.

♦ Нарастает гипогидратация. Организм теряет большое количество жидкости в результате повышенного потоотделения и мочеобразования на стадии компенсации, что приводит к гипогидратации организма. Потеря 9-10% жидкости сочетается с существенными расстройствами жизнедеятельности. Это состояние обозначают как «синдром пустынной болезни».

♦ Развивается гипертермический кардиоваскулярный синдром: нарастает тахикардия, снижается сердечный выброс, МОК поддерживается за счёт увеличенной ЧСС, систолическое АД может ненадолго возрастать, а диастолическое АД снижается; развиваются расстройства микроциркуляции.

♦ Нарастают признаки истощения механизмов стресса и лежащие в основе этого надпочечниковая и тиреоидная недостаточность: наблюдаются гиподинамия, мышечная слабость, снижение сократительной функции миокарда, развитие гипотензии, вплоть до коллапса.

♦ Изменяются реологические свойства крови: повышается её вязкость, появляются признаки сладж-синдрома, диссеминированного внутрисосудистого свёртывания белков крови (ДВС-синдрома) и фибринолиза.

♦ Развиваются метаболические и физико-химические расстройства: теряются Cl, K+, Ca2+, Na+, Mg2+ и другие ионы; из организма выводятся водорастворимые витамины.

♦ Регистрируется ацидоз. В связи с нарастанием ацидоза увеличивается вентиляция лёгких и выделение углекислоты; повышается потребление кислорода; снижается диссоциация HbO2.

♦ Увеличивается концентрация в плазме крови так называемых молекул средней массы (от 500 до 5 000 Да) – олигосахаридов, полиаминов, пептидов, нуклеотидов, глико- и нуклеопротеинов. Указанные соединения обладают высокой цитотоксичностью.

♦ Появляются белки теплового шока.

♦ Существенно модифицируется физико-химическое состояние липидов. Активируется СПОЛ, увеличивается текучесть мембранных липидов, что нарушает функциональные свойства мембран.

♦ В тканях мозга, печени, лёгких, мышц значительно повышается содержание продуктов липопероксидации – диеновых конъюгатов и гидроперекисей липидов.

Самочувствие в эту стадию резко ухудшается, появляются нарастающая слабость, сердцебиение, пульсирующая головная боль, ощущение сильной жары и чувство жажды, психическое возбуждение и двигательное беспокойство, тошнота и рвота.

Гипертермия может сопровождаться (особенно при гипертермической коме) отёком мозга и его оболочек, гибелью нейронов, дистрофией миокарда, печени, почек, венозной гиперемией и петехиальными кровоизлияниями в мозге, сердце, почках и других органах. У некоторых пациентов наблюдаются значительные нервно-психические расстройства (бред, галлюцинации).

При гипертермической коме развивается оглушённость и потеря сознания; могут наблюдаться клонические и тетанические судороги, нистагм, расширение зрачков, сменяющееся их сужением.

ИСХОДЫ

При неблагоприятном течении гипертермии и отсутствии врачебной помощи пострадавшие погибают в результате недостаточности кровообращения, прекращения сердечной деятельности (фибрилляция желудочков и асистолия) и дыхания.

Тепловой удар

Тепловой удар – острая форма гипертермии с достижением опасных для жизни значений температуры тела в 42-43 °C (ректальной) в течение короткого времени.

Этиология

•  Действие тепла высокой интенсивности.

•  Низкая эффективность механизмов адаптации организма к повышенной температуре внешней среды.

Патогенез

Тепловой удар – гипертермия с непродолжительной стадией компенсации, быстро переходящая в стадию декомпенсации. Температура тела имеет тенденцию приближаться к температуре внешней среды. Летальность при тепловом ударе достигает 30%. Смерть пациентов – результат острой прогрессирующей интоксикации, сердечной недостаточности и остановки дыхания.

•  Интоксикация организма молекулами средней массы сопровождается гемолизом эритроцитов, повышением проницаемости стенок сосудов, развитием синдрома ДВС.

•  Острая сердечная недостаточность является результатом острых дистрофических изменений в миокарде, нарушения актомиозинового взаимодействия и энергетического обеспечения кардиомиоцитов.

•  Остановка дыхания может быть следствием нарастающей гипоксии головного мозга, отёка и кровоизлияния в мозг.

Солнечный удар

Солнечный удар – гипертермическое состояние, обусловленное прямым воздействием энергии солнечного излучения на организм.

Этиология. Причина солнечного удара – чрезмерная инсоляция. Наибольшее патогенное действие оказывает инфракрасная часть солнечной радиации, т.е. радиационное тепло. Последнее, в отличие от конвекционного и кондукционного тепла, одновременно прогревает поверхностные и глубокие ткани организма, в том числе ткань головного мозга.

Патогенез. Ведущим звеном патогенеза является поражение ЦНС.

•  Первоначально развивается артериальная гиперемия головного мозга. Это приводит к увеличению образования межклеточной жидкости и к сдавлению вещества головного мозга. Сдавление находящихся в полости черепа венозных сосудов и синусов способствует развитию венозной гиперемии мозга. В свою очередь, венозная гиперемия приводит к гипоксии, отёку и мелкоочаговым кровоизлияниям в мозг. В результате появляется очаговая симптоматика в виде нарушений чувствительности, движения и вегетативных функций.

•  Нарастающие нарушения метаболизма, энергетического обеспечения и пластических процессов в нейронах мозга потенцируют декомпенсацию механизмов терморегуляции, расстройства функций ССС, дыхания, желёз внутренней секреции, крови, других систем и органов.

Солнечный удар чреват высокой вероятностью смерти (в связи с нарушением функций ССС и дыхательной системы), а также развитием параличей, расстройств чувствительности и нервной трофики.

Принципы терапии и профилактики гипертермических состояний

Лечение пострадавших организуют с учётом этиотропного, патогенетического и симптоматического принципов.

Этиотропное лечение направлено на прекращение действия причины гипертермии и устранение факторов риска. С этой целью используют методы, направленные на нормализацию теплоотдачи, прекращение действия высокой температуры и разобщителей окислительного фосфорилирования.

Патогенетическая терапия имеет целью блокаду ключевых механизмов гипертермии и стимуляцию адаптивных процессов (компенсации, защиты, восстановления). Эти цели достигаются путём:

•  Нормализации функций ССС, дыхания, объёма и вязкости крови, механизмов нейрогуморальной регуляции функции потовых желёз.

•  Устранения сдвигов важнейших параметров гомеостаза (pH, осмотического и онкотического давления крови, АД).

•  Дезинтоксикации организма (гемодилюция и стимуляция экскреторной функции почек).

Симптоматическое лечение при гипертермических состояниях направлено на устранение неприятных и тягостных ощущений, усугубляющих состояние пострадавшего («невыносимой» головной боли, повышенной чувствительности кожи и слизистых оболочек к теплу, чувства страха смерти и депрессии); лечение осложнений и сопутствующих патологических процессов.

Профилактика гипертермических состояний направлена на предотвращение чрезмерного воздействия на организм теплового фактора.

ГИПЕРТЕРМИЧЕСКИЕ РЕАКЦИИ

Гипертермические реакции проявляются временным повышением температуры тела за счёт преходящего преобладания теплопродукции над теплоотдачей при сохранении механизмов терморегуляции.

По критерию происхождения различают гипертермические реакции эндогенные, экзогенные и сочетанные (злокачественная гипертермия). Эндогенные гипертермические реакции подразделяют на психогенные, нейрогенные и эндокринные.

•  Психогенные гипертермические реакции развиваются при сильном стрессе и психопатологических состояниях.

•  Нейрогенные гипертермические реакции подразделяют на центрогенные и рефлекторные.

♦ Центрогенные гипертермические реакции развиваются при непосредственном раздражении нейронов центра теплорегуляции, отвечающих за теплопродукцию.

♦ Рефлекторные гипертермические реакции возникают при сильном раздражении различных органов и тканей: жёлчных ходов печени и желчевыводящих путей; лоханок почек и мочевыводящих путей при прохождении по ним конкрементов.

•  Эндокринные гипертермические реакции развиваются в результате гиперпродукции катехоламинов (при феохромоцитоме) или гормонов щитовидной железы (при гипертиреоидных состояниях). Ведущий механизм – активация экзотермических процессов обмена веществ, в том числе образование разобщителей окисления и фосфорилирования.

Экзогенные гипертермические реакции подразделяют на лекарственные и нелекарственные.

•  Лекарственные (медикаментозные, фармакологические) гипертермические реакции обусловлены ЛС, оказывающими разобщающий эффект: симпатомиметиками (кофеин, эфедрин, допамин), Ca2+- содержащими препаратами.

•  Нелекарственные гипертермические реакции вызывают вещества, обладающие термогенным действием: 2,4-динитрофенол, цианиды, амитал. Эти вещества активируют симпатикоадреналовую и тиреоидную системы.

ЛИХОРАДКА

Лихорадка – типовой патологический процесс, характеризующийся временным повышением температуры тела за счёт динамической перестройки системы терморегуляции под действием пирогенов.

ЭТИОЛОГИЯ

Причина лихорадки – пироген. По источнику возникновения и механизму действия выделяют первичные и вторичные пирогены.

Первичные пирогены

Первичные пирогены сами не воздействуют на центр терморегуляции, но вызывают экспрессию генов, кодирующих синтез цитокинов (пирогенных лейкокинов).

По происхождению различают инфекционные и неинфекционные первичные пирогены.

•  Пирогены инфекционного происхождения – наиболее частая причина лихорадки. К инфекционным пирогенам отнесены липополисахариды, липотейхоевая кислота, а также экзотоксины, выступающие в роли суперантигенов.

 Липополисахариды (ЛПС, эндотоксины) обладают наибольшей пирогенностью ЛПС входит в состав мембран микроорганизмов, главным образом грамотрицательных. Пирогенное действие свойственно липиду А, входящему в состав ЛПС.

 Липотейхоевая кислота. Грамположительные микробы содержат липотейхоевую кислоту и пептидогликаны, обладающие пирогенным свойством.

•  По структуре пирогены неинфекционного генеза чаще являются белками, жирами, реже – нуклеиновыми кислотами или нуклеопротеинами. Эти вещества могут поступать извне (парентеральное введение в организм компонентов крови, вакцин, жировых эмульсий) или образовываться в самом организме (при неинфекционном воспалении, инфаркте миокарда, распаде опухолей, гемолизе эритроцитов, аллергических реакциях).

Вторичные пирогены. Под влиянием первичных пирогенов в лейкоцитах образуются цитокины (лейкокины), обладающие пирогенной активностью в ничтожно малой дозе. Пирогенные лейкокины называют вторичными, истинными, или лейкоцитарными пирогенами. Эти вещества непосредственно воздействуют на центр терморегуляции, изменяя его функциональную активность. К числу пирогенных цитокинов относятся ИЛ1 (ранее обозначавшийся как «эндогенный пироген»), ИЛ6, ФНОα, γ-ИФН.

ПАТОГЕНЕЗ ЛИХОРАДКИ

Лихорадка – динамичный и стадийный процесс. По критерию изменения температуры тела выделяют три стадии лихорадки: I – подъ- ёма температуры, II – стояния температуры на повышенном уровне и III – снижения температуры до нормального диапазона.

Стадия подъёма температуры

Стадия подъёма температуры тела (стадия I, st. incrementi) характеризуется накоплением в организме дополнительного количества тепла за счёт преобладания теплопродукции над теплоотдачей.

•  Пирогенные лейкокины из крови проникают через гематоэнцефалический барьер и в преоптической зоне переднего гипоталамуса взаимодействуют с рецепторами нервных клеток центра терморегуляции. В результате активируется мембраносвязанная фосфолипаза А2 и высвобождается арахидоновая кислота.

•  В нейронах центра терморегуляции значительно повышается активность циклооксигеназы. Результатом метаболизма арахидоновой кислоты по циклооксигеназному пути является увеличение концентрации ПгЕ2.

•  Образование ПгЕ2 – одно из ключевых звеньев развития лихорадки.

Аргументом этому является факт предотвращения лихорадки при подавлении активности циклооксигеназы нестероидными противовоспалительными средствами (НПВС, например, ацетилсалициловой кислотой или диклофенаком).

•  ПгЕ2 активирует аденилатциклазу, катализирующую образование в нейронах циклического 3′,5′-аденозинмонофосфата (цАМФ). Это, в свою очередь, повышает активность цАМФ-зависимых протеинкиназ, что приводит к снижению порога возбудимости холодовых рецепторов (т.е. повышению их чувствительности).

•  Благодаря этому нормальная температура крови воспринимается как пониженная: импульсация холодочувствительных нейронов в адрес эффекторных нейронов заднего гипоталамуса значительно возрастает. В связи с этим так называемая «установочная температурная точка» центра теплорегуляции повышается.

Описанные выше изменения являются центральным звеном механизма развития стадии I лихорадки. Они запускают периферические механизмы терморегуляции.

•  Теплоотдача снижается в результате активации нейронов ядер симпатикоадреналовой системы, находящихся в задних отделах гипоталамуса.

 Повышение симпатикоадреналовых влияний приводит к генерализованному сужению просвета артериол кожи и подкожной клетчатки, уменьшению их кровенаполнения, что значительно понижает теплоотдачу.

 Снижение температуры кожи вызывает увеличение импульсации от её холодовых рецепторов к нейронам центра терморегуляции, а также к ретикулярной формации.

•  Активация механизмов теплопродукции (сократительного и несократительного термогенеза).

 Активация структур ретикулярной формации стимулирует процессы сократительного мышечного термогенеза в связи с возбуждением γ- и α-мотонейронов спинного мозга. Развивается терморегуляторное миотоническое состояние – тоническое напряжение скелетных мышц, которое сопровождается увеличением теплопродукции в мышцах.

 Нарастающая эфферентная импульсация нейронов заднего гипоталамуса и ретикулярной формации стволовой части мозга обусловливает синхронизацию сокращений отдельных мышечных пучков скелетной мускулатуры, которая проявляется как мышечная дрожь.

 Несократительный (метаболический) термогенез – другой важный механизм теплопродукции при лихорадке. Причины его: активация симпатических влияний на метаболические процессы и повышение уровня тиреоидных гормонов в крови.

Повышение температуры обусловлено одновременным увеличением теплопродукции и ограничением теплоотдачи, хотя значимость каждого из этих компонентов может быть различной. На стадии I лихорадки увеличение основного обмена повышает температуру тела на 10-20%, а остальное является результатом снижения теплоотдачи кожей вследствие вазоконстрикции.

Температура внешней среды оказывает относительно малое влияние на развитие лихорадки и динамику температуры тела. Следовательно, при развитии лихорадки система терморегуляции не расстраивается, а динамично перестраивается и работает на новом функциональном уровне. Это отличает лихорадку от всех остальных гипертермических состояний.

Стадия стояния температуры тела на повышенном уровне

Стадия стояния температуры тела на повышенном уровне (стадия II, st. fastigii) характеризуется относительной сбалансированностью теплопродукции и теплоотдачи на уровне, существенно превышающем долихорадочный.

• Тепловой баланс устанавливается за счёт следующих механизмов:

♦ повышение активности тепловых рецепторов преоптической зоны переднего гипоталамуса, вызываемое повышенной температурой крови;

♦ температурная активация периферических термосенсоров внутренних органов способствует установлению баланса между адренергическими влияниями и возрастающими холинергическими воздействиями;

♦ усиление теплоотдачи достигается за счёт расширения артериол кожи и подкожной клетчатки и усиления потоотделения;

♦ снижение теплопродукции происходит за счёт уменьшения интенсивности метаболизма.

Совокупность суточной и стадийной динамики при лихорадке обозначается как температурная кривая.Различают несколько типовых разновидностей температурной кривой.

♦ Постоянная. При ней суточный диапазон колебаний температуры тела не превышает 1 °C. Такой тип кривой часто выявляют у пациентов с долевой пневмонией или брюшным тифом.

♦ Ремиттирующая. Характеризуется суточными колебаниями температуры более чем на 1 °C, но без возврата к нормальному диапазону (часто наблюдается при вирусных заболеваниях).

♦ Послабляющая, или интермиттирующая. Колебания температуры тела в течение суток достигают 1-2 °C, причём она может нормализоваться на несколько часов, с последующим её повышением. Такой тип температурной кривой нередко регистрируют при абсцессах лёгких, печени, гнойной инфекции, туберкулёзе.

♦ Истощающая, или гектическая. Характеризуется повторными повышениями температуры в течение суток более чем на 2-3 °C с её быстрыми последующими снижениями. Такая картина нередко наблюдается при сепсисе.

Выделяют и некоторые другие типы температурных кривых. Учитывая, что температурная кривая при инфекционной лихорадке в большой степени зависит от особенностей микроорганизма, определение её типа может иметь диагностическое значение.

При лихорадке выделяют несколько степеней повышения температуры тела:

♦ слабую, или субфебрильную (в диапазоне 37-38 °C);

♦ умеренную, или фебрильную (38-39 °C);

♦ высокую, или пиретическую (39-41 °C);

♦ чрезмерную, или гиперпиретическую (выше 41 °C).

Стадия снижения температуры тела до нормальной

Стадия снижения температуры тела до значений нормального диапазона (стадия III лихорадки, st. decrementi) характеризуется постепенным снижением продукции лейкокинов.

•  Причина: прекращение действия первичного пирогена вследствие уничтожения микроорганизмов или неинфекционных пирогенных веществ.

•  Последствия: содержание лейкокинов и их влияние на центр терморегуляции уменьшаются, в результате чего «установочная температурная точка» снижается.

Разновидности снижения температуры на стадии III лихорадки:

♦ постепенное снижение, или литическое (чаще);

♦ быстрое снижение, или критическое (реже).

ОБМЕН ВЕЩЕСТВ ПРИ ЛИХОРАДКЕ

Развитие лихорадки сопровождается рядом изменений метаболизма.

•  Основной обмен на I и II стадии лихорадки повышается за счёт активации симпатикоадреналовой системы, выброса в кровь йодсодержащих тиреоидных гормонов и температурной стимуляции метаболизма. Это обеспечивает энергией и субстратами метаболизма повышенное функционирование ряда органов и способствует повышению температуры тела. На стадии III лихорадки основной обмен снижается.

•  Углеводный обмен характеризуется значительной активацией гликогенолиза и гликолиза, но (вследствие действия разобщителей) сочетается с низкой энергетической его эффективностью. Это в значительной мере стимулирует распад липидов.

•  Обмен жиров при лихорадке характеризуется преобладанием катаболических процессов, особенно при затянувшейся стадии II. При лихорадке окисление липидов блокируется на этапах промежуточных продуктов, в основном – КТ, что способствует развитию ацидоза. Для профилактики этих расстройств при длительных лихорадочных состояниях пациенты должны потреблять большое количество углеводов.

•  Белковый обмен при острой умеренной лихорадке с повышением температуры до 39 °C существенно не расстраивается. Длительное течение лихорадки, особенно при значительном увеличении температуры тела, приводит к нарушению пластических процессов, развитию дистрофий в различных органах и усугублению расстройств жизнедеятельности организма в целом.

•  Водно-электролитный обмен подвержен значительным изменениям.

♦ На стадии I увеличивается потеря организмом жидкости в связи с увеличением образования пота и мочи, что сопровождается потерей Na+, Ca2+, Cl.

♦ На стадии II активируется выброс кортикостероидов из надпочечников (в том числе – альдостерона) и АДГ в гипофизе. Эти гормоны активируют реабсорбцию воды и солей в канальцах почек.

♦ На стадии III содержание альдостерона и АДГ снижается, происходит нормализация водно-электролитного баланса.

•  Признаки почечной, печёночной или сердечной недостаточности, различные эндокринопатии, синдромы мальабсорбции появляются при лихорадке при существенном поражении соответствующих органов.

ФУНКЦИИ ОРГАНОВ И ИХ СИСТЕМ ПРИ ЛИХОРАДКЕ

При лихорадке изменяются функции органов и физиологических систем. Причины:

♦ воздействие на организм первичного пирогенного агента;

♦ колебания температуры тела;

♦ влияние регуляторных систем организма;

♦ вовлечение органов в реализацию разнообразных терморегуляторных реакций.

Следовательно, то или иное отклонение функций органов при лихорадке представляет собой их интегративную реакцию на указанные выше факторы.

Проявления

•  Нервная система

♦ Неспецифические нервно-психические расстройства: раздражительность, плохой сон, сонливость, головная боль; спутанность сознания, заторможенность, иногда – галлюцинации.

♦ Повышенная чувствительность кожи и слизистых оболочек.

♦ Нарушение рефлексов.

♦ Изменение болевой чувствительности, невропатии.

•  Эндокринная система

♦ Активация гипоталамо-гипофизарного комплекса ведёт к усилению синтеза отдельных либеринов, а также АДГ в гипоталамусе.

♦ Увеличение продукции АКТГ и ТТГ в аденогипофизе.

♦ Повышение в крови уровней кортикостероидов, катехоламинов, T3 и T4, инсулина.

♦ Изменение содержания тканевых (местных) БАВ – Пг, лейкотриенов, кининов и других.

•  Сердечно-сосудистая система

♦ Тахикардия. Степень увеличения ЧСС прямо пропорциональна повышению температуры тела.

♦ Нередко – аритмии, гипертензивные реакции, централизация кровотока.

•  Внешнее дыхание

♦ Обычно при повышении температуры тела происходит увеличение объёма вентиляции лёгких. Главные стимуляторы дыхания – увеличение pCO2 и снижение pH в крови.

♦ Частота и глубина дыханий изменяются по-разному: однонаправленно или разнонаправлено, т.е. увеличение глубины дыханий может сочетаться со снижением его частоты и наоборот.

•  Пищеварение

♦ Снижение аппетита.

♦ Уменьшение слюноотделения, секреторной и моторной функций (результат активации симпатикоадреналовой системы, интоксикации и повышенной температуры тела).

♦ Подавление образования пищеварительных ферментов поджелудочной железой и жёлчи печенью.

•  Почки. Выявляющиеся изменения отражают лишь перестройку различных регуляторных механизмов и функций других органов и систем при лихорадке.

ЗНАЧЕНИЕ ЛИХОРАДКИ

Лихорадка является адаптивным процессом, но при определённых условиях может сопровождаться патогенными эффектами.

•  Адаптивные эффекты лихорадки

♦ Прямые бактериостатический и бактерицидный эффекты: коагуляция чужеродных белков и уменьшение активности микробов.

♦ Опосредованные эффекты: потенцирование специфических и неспецифических факторов системы ИБН, инициация стресса.

•  Патогенные эффекты лихорадки

♦ Прямое повреждающее действие высокой температуры заключается в коагуляции собственных белков, нарушении электрогенеза, увеличении СПОЛ.

♦ Опосредованное повреждающее действие: функциональная перегрузка органов и их систем может привести к развитию патологических реакций.

ОТЛИЧИЯ ЛИХОРАДКИ ОТ ДРУГИХ ГИПЕРТЕРМИЧЕСКИХ СОСТОЯНИЙ

•  Гипертермии обусловлены высокой температурой внешней среды, нарушением теплоотдачи и теплопродукции, а причина лихорадки – пирогены.

•  При перегревании организма происходит нарушение механизмов терморегуляции, при гипертермических реакциях – нецелесообразное повышение теплопродукции, а при лихорадке система терморегуляции адаптивно перестраивается.

•  При перегревании температура тела повышается пассивно, а при лихорадке – активно, с затратой значительного количества энергии.

ПРИНЦИПЫ И МЕТОДЫ ЛЕЧЕНИЯ ЛИХОРАДКИ

Необходимо помнить, что умеренное повышение температуры тела при лихорадке имеет адаптивное значение, заключающееся в активации комплекса защитных, приспособительных и компенсаторных реакций, направленных на уничтожение или ослабление патогенных агентов. Проведение жаропонижающей терапии целесообразно лишь тогда, когда наблюдается или возможно повреждающее действие гипертермии на жизнедеятельность организма:

♦ при чрезмерном (более 38,5 °C) повышении температуры тела;

♦ у пациентов с декомпенсированным СД или недостаточностью кровообращения;

♦ у новорождённых, детей грудного возраста и пожилых лиц в связи с несовершенством системы терморегуляции организма.

Этиотропное лечение направлено на прекращение действия пирогенного агента.

•  При инфекционной лихорадке проводят противомикробную терапию.

•  При лихорадке неинфекционного происхождения принимают меры по прекращению попадания в организм пирогенных веществ (цельной крови или плазмы, вакцин, сывороток, белоксодержащих веществ); удалению из организма источника пирогенных агентов (например, некротизированной ткани, опухоли, содержимого абсцесса).

Патогенетическая терапия имеет целью блокаду ключевых звеньев патогенеза и, как следствие, – снижение чрезмерно высокой температуры тела. Это достигается:

•  Торможением продукции, предотвращением или уменьшением эффектов веществ, образующихся в нейронах центра терморегуляции под влиянием лейкокинов: ПгЕ, цАМФ. Для этого применяют ингибиторы циклооксигеназы – ацетилсалициловую кислоту и другие

НПВС.

•  Блокадой синтеза и эффектов лейкоцитарных пирогенов (ИЛ1, ИЛ6, ФНО, γ-ИФН).

•  Снижением избыточной теплопродукции путём подавления интенсивности окислительных реакций. Последнее может быть достигнуто, например, путём применения препаратов хины.

Симптоматическое лечение ставит задачу устранить тягостные и неприятные ощущения и состояния, усугубляющие статус пациента. При

лихорадке к таким симптомам относятся сильная головная боль, тошнота и рвота, боль в суставах и мышцах («ломка»), аритмии сердца.

Пиротерапия

Искусственная гипертермия (пиротерапия) в медицине применяется с давних времён. В настоящее время лечебную пиротерапию применяют в сочетании с другими воздействиями медикаментозного и немедикаментозного характера. Различают общую и местную пиротерапию. Общая пиротерапия.Общую пиротерапию проводят путём воспроизведения лихорадки с помощью очищенных пирогенов (например, пирогенала или веществ, стимулирующих синтез эндогенных пирогенов). Умеренное повышение температуры тела стимулирует адаптивные процессы в организме:

♦ специфические и неспецифические механизмы системы ИБН (при некоторых инфекционных процессах – сифилисе, гонорее, постинфекционных артритах);

♦ пластические и репаративные процессы в костях, тканях и паренхиматозных органах (при их деструкции, повреждении, дистрофиях, после хирургических вмешательств).

Местная гипертермия. Местную гипертермию per se, а также в комплексе с другими методами лечения, воспроизводят для стимуляции регионарных механизмов защиты (иммунных и неиммунных), репарации и кровообращения. Регионарную гипертермию индуцируют при хронических воспалительных процессах, эрозиях и язвах кожи, подкожной клетчатки, а также при отдельных разновидностях злокачественных новообразований.

ГИПОТЕРМИЧЕСКИЕ СОСТОЯНИЯ

Гипотермические состояния характеризуются понижением температуры тела ниже нормы. В основе их развития лежит расстройство механизмов терморегуляции, обеспечивающих оптимальный тепловой режим организма. Различают охлаждение организма (собственно гипотермию) и управляемую (искусственную) гипотермию, или медицинскую гибернацию.

Гипотермия

Гипотермия – типовая форма расстройства теплового обмена – возникает в результате действия на организм низкой температуры внешней среды и значительного снижения теплопродукции. Гипотермия характеризуется нарушением (срывом) механизмов теплорегуляции и проявляется снижением температуры тела ниже нормы.

ЭТИОЛОГИЯ

•  Причины развития охлаждения организма многообразны.

♦ Низкая температура внешней среды – наиболее частая причина гипотермии. Развитие гипотермии возможно не только при отрицательной (ниже 0 °C), но и при положительной внешней температуре. Показано, что снижение температуры тела (в прямой кишке) до 25 °C уже опасно для жизни; до 17-18 °C – обычно смертельно.

♦ Обширные параличи мышц или уменьшение их массы (например, при их гипотрофии или дистрофии).

♦ Нарушение обмена веществ и снижение эффективности экзотермических процессов метаболизма. Такие состояния могут развиваться при надпочечниковой недостаточности, ведущей к дефициту в организме катехоламинов; при выраженных гипотиреоидных состояниях; при травмах и дистрофических процессах в центрах симпатической нервной системы.

♦ Крайняя степень истощения организма.

•  Факторы риска охлаждения организма.

♦ Повышенная влажность воздуха.

♦ Высокая скорость движения воздуха (сильный ветер).

♦ Повышенная влажность одежды или её намокание.

♦ Попадание в холодную воду. Вода примерно в 4 раза более теп- лоёмка и в 25 раз более теплопроводна, чем воздух. В связи с этим замерзание в воде может возникнуть при сравнительно высокой температуре: при температуре воды +15 °C человек сохраняет жизнеспособность не более 6 ч, при +1 °C – примерно 0,5 ч.

♦ Длительное голодание, физическое переутомление, алкогольное опьянение, а также различные заболевания, травмы и экстремальные состояния.

ПАТОГЕНЕЗ ГИПОТЕРМИИ

Развитие гипотермии – процесс стадийный. В основе её формирования лежит более или менее длительное перенапряжение и, в конце концов, срыв механизмов терморегуляции организма. В связи с этим при гипотермии (как и при гипертермии) различают две стадии её развития: компенсации (адаптации) и декомпенсации (дезадаптации).

Стадия компенсации

Стадия компенсации характеризуется активацией экстренных адаптивных реакций, направленных на уменьшение теплоотдачи и увеличение теплопродукции.

♦ Изменение поведения индивида (направленный уход из холодного помещения, использование тёплой одежды, обогревателей и т.п.).

♦ Снижение теплоотдачи (достигается благодаря уменьшению и прекращению потоотделения, сужению артериальных сосудов кожи и подкожных тканей).

♦ Активация теплопродукции (за счёт увеличения кровотока во внутренних органах и повышения мышечного сократительного термогенеза).

♦ Включение стрессорной реакции (возбуждённое состояние пострадавшего, повышение электрической активности центров терморегуляции, увеличение секреции либеринов в нейронах гипоталамуса, в аденоцитах гипофиза – АКТГ и ТТГ, в мозговом веществе надпочечников – катехоламинов, а в их коре – кортикостероидов, в щитовидной железе – тиреоидных гормонов).

Благодаря комплексу указанных изменений температура тела хотя и понижается, но ещё не выходит за рамки нижней границы нормы. Если причинный фактор продолжает действовать, то компенсаторные реакции могут стать недостаточными. При этом снижается температура не только покровных тканей, но и внутренних органов, в том числе и мозга. Последнее ведёт к расстройствам центральных механизмов терморегуляции, дискоординации и неэффективности процессов теплопродукции – развивается их декомпенсация.

Стадия декомпенсации

Стадия декомпенсации (дезадаптация) является результатом срыва центральных механизмов терморегуляции. На стадии декомпенсации температура тела падает ниже нормального уровня (в прямой кишке она снижается до 35 °C и ниже). Температурный гомеостаз организма нарушается: организм становится пойкилотермным. Нередко формируются порочные круги, потенцирующие развитие гипотермии и расстройств жизнедеятельности организма.

•  Метаболический порочный круг. Снижение температуры тканей в сочетании с гипоксией тормозит протекание метаболических реакций. Подавление интенсивности метаболизма сопровождается уменьшением выделения свободной энергии в виде тепла. В результате температура тела ещё более снижается, что дополнительно подавляет интенсивность метаболизма и т.д.

•  Сосудистый порочный круг. Нарастающее снижение температуры тела при охлаждении сопровождается расширением артериальных сосудов (по нейромиопаралитическому механизму) кожи, слизистых оболочек, подкожной клетчатки. Расширение сосудов кожи и приток к ним тёплой крови от органов и тканей ускоряет процесс потери организмом тепла. В результате температура тела ещё более снижается, ещё в большей мере расширяются сосуды и т.д.

•  Нервно-мышечный порочный круг. Прогрессирующая гипотермия обусловливает снижение возбудимости нервных центров, в том числе контролирующих тонус и сокращение мышц. В результате этого выключается такой мощный механизм теплопродукции как мышечный сократительный термогенез. В результате температура тела интенсивно снижается, что ещё более подавляет нервно-мышечную возбудимость и т.д.

Углубление гипотермии вызывает торможение функций вначале корковых, а в последующем и подкорковых нервных центров. Развивается гиподинамия, апатия и сонливость, которые могут завершиться комой. В связи с этим нередко выделяют стадию гипотермического «сна» или комы.

При нарастании действия охлаждающего фактора наступает замерзание и смерть организма.

ПРИНЦИПЫ ЛЕЧЕНИЯ ГИПОТЕРМИИ

Лечение гипотермии зависит от степени снижения температуры тела и выраженности расстройств жизнедеятельности организма. Стадия компенсации. На стадии компенсации пострадавшие нуждаются главным образом в прекращении внешнего охлаждения и согревании тела (в тёплой ванне, грелками, сухой тёплой одеждой, тёплым питьём).

Стадия декомпенсации

На стадии декомпенсации гипотермии необходимо проведение интенсивной комплексной врачебной помощи. Она базируется на трёх принципах: этиотропном, патогенетическом и симптоматическом.

•  Этиотропное лечение включает следующие мероприятия.

♦ Меры по прекращению действия охлаждающего фактора и согревание организма. Активное согревание тела прекращают при температуре в прямой кишке 33-34 °C во избежание развития гипертермического состояния. Последнее вполне вероятно, поскольку у пострадавшего ещё не восстановлена адекватная функция системы теплорегуляции организма.

♦ Согревание внутренних органов и тканей (через прямую кишку, желудок, лёгкие) даёт больший эффект.

•  Патогенетическое лечение.

♦ Восстановление эффективного кровообращения и дыхания. При нарушении дыхания необходимо освободить дыхательные пути (от слизи, запавшего языка) и провести ИВЛ воздухом либо газовыми смесями с повышенным содержанием кислорода. Если нарушена деятельность сердца, то выполняют его непрямой массаж, а при необходимости – дефибрилляцию.

♦ Коррекция КЩР, баланса ионов и жидкости. С этой целью применяют сбалансированные солевые и буферные растворы (например, гидрокарбоната натрия), коллоидные растворы декстрана.

♦ Устранение дефицита глюкозы в организме достигают путём введения её растворов разной концентрации в сочетании с инсулином, а также витаминами.

• ♦ При кровопотере переливают кровь, плазму и плазмозаменители. Симптоматическое лечениенаправлено на устранение изменений

в организме, усугубляющих состояние пострадавшего.

♦ Применяют средства, предотвращающие отёк мозга, лёгких и других органов.

♦ Устраняют артериальную гипотензию.

♦ Нормализуют диурез.

♦ Устраняют сильную головную боль.

♦ При наличии отморожений, осложнений и сопутствующих болезней проводят их лечение.

ПРИНЦИПЫ ПРОФИЛАКТИКИ ГИПОТЕРМИИ

Профилактика охлаждения организма включает комплекс мероприятий.

♦ Использование сухой тёплой одежды и обуви.

♦ Правильная организация труда и отдыха в холодное время года.

♦ Организация обогревательных пунктов, обеспечение горячим питанием.

♦ Медицинское наблюдение за участниками зимних военных действий, учений, спортивных соревнований.

♦ Запрещение приёма алкоголя перед длительным пребыванием на холоде.

♦ Закаливание организма и акклиматизация человека к условиям окружающей среды.

Медицинская гибернация

Управляемая гипотермия (медицинская гибернация) – метод управляемого снижения температуры тела или его части с целью уменьшения интенсивности обмена веществ и функциональной активности тканей, органов и их систем, а также повышения их устойчивости к гипоксии.

Управляемая (искусственная) гипотермия применяется в медицине в двух разновидностях: общей и местной.

ОБЩАЯ УПРАВЛЯЕМАЯ ГИПОТЕРМИЯ

Область применения. Выполнение хирургических операций в условиях значительного снижения или даже временного прекращения

регионарного кровообращения. Это получило название операций на «сухих» органах: сердце, мозге и некоторых других. Преимущества. Существенное возрастание устойчивости и выживаемости клеток и тканей в условиях гипоксии при сниженной температуре. Это даёт возможность отключить орган от кровоснабжения на несколько минут с последующим восстановлением его жизнедеятельности и адекватного функционирования.

Диапазон температуры. Обычно используют гипотермию со снижением ректальной температуры до 30-28 °C. При необходимости длительных манипуляций создают более глубокую гипотермию с использованием аппарата искусственного кровообращения, миорелаксантов, ингибиторов метаболизма и других воздействий.

ЛОКАЛЬНАЯ УПРАВЛЯЕМАЯ ГИПОТЕРМИЯ

Локальную управляемую гипотермию отдельных органов или тканей (головного мозга, почек, желудка, печени, предстательной железы и др.) применяют при необходимости проведения оперативных вмешательств или других лечебных манипуляций на них: коррекции кровотока, пластических процессов, обмена веществ, эффективности ЛС.

ГЛАВА 7. ИНФЕКЦИОННЫЙ ПРОЦЕСС

Инфекционный процесс, или инфекция – типовой патологический процесс, возникающий под действием микроорганизмов.

Инфекционный процесс представляет собой комплекс взаимосвязанных изменений: функциональных, морфологических, иммунобиологических, биохимических и других, лежащих в основе развития конкретных инфекционных болезней.

Терминология

Выделяют следующие инфекционные процессы.

•  Сепсис – тяжёлая генерализованная форма инфекционного процесса.

•  Бактериемия, вирусемия – наличие в крови бактерий или вирусов без признаков их размножения.

•  Микст-инфекция – инфекционный процесс, вызванный одновременно двумя и более возбудителями.

•  Реинфекция – повторное (после выздоровления пациента) возникновение инфекционного процесса, вызванного тем же микроорганизмом.

•  Суперинфекция – повторное инфицирование организма тем же возбудителем до выздоровления.

•  Вторичная инфекция – инфекционный процесс, развивающийся на фоне уже имеющейся (первичной) инфекции, вызванной другим микроорганизмом.

Этиология

Причина инфекции – микроорганизмы.

Взаимоотношения макро- и микроорганизмов. Макро- и микроорганизмы могут находиться в различных отношениях: паразитизма, мутуализма и комменсализма (табл. 7-1).

Таблица 7-1. Основные формы симбиоза макро- и микроорганизма

Тип взаимодействия Категория микроорганизмов Краткая характеристика
Паразитизм Патогенные Микроорганизм наносит ущерб организму-хозяину и в большинстве случаев продуцируют токсины
Мутуализм Непатогенные Взаимовыгодные отношения макро- и микроорганизма
Комменсализм Патогенные условно Промежуточный тип взаимодействия: микробы могут наносить вред макроорганизму в определённых условиях

Виды возбудителей. К возбудителям инфекции относятся простейшие, грибы, бактерии, вирусы и прионы.

Свойства возбудителей. К ним относятся патогенность и вирулентность, а также факторы патогенности.

Патогенность – способность возбудителя проникать в макроорганизм, размножаться в нём и вызывать болезнь. Это свойство заложено в генотипе возбудителя, оно передаётся по наследству и является видовым.

Вирулентность – фенотипическое свойство, характеризующее степень болезнетворности микроорганизма (мера патогенности).

ФАКТОРЫ ПАТОГЕННОСТИ

К основным факторам патогенности относят факторы распространения, адгезии, колонизации, защиты, а также токсины. Факторы распространения обеспечивают или облегчают проникновение возбудителя во внутреннюю среду организма и распространение в ней:

♦ ферменты (гиалуронидаза, коллагеназа, нейраминидаза);

♦ жгутики (у холерного вибриона, кишечной палочки, протея);

♦ ундулирующая мембрана (у спирохет и некоторых простейших). Факторы адгезии и колонизацииспособствуют попадающим в организм хозяина микроорганизмам взаимодействовать со специфическими рецепторами клеток, обеспечивая тем самым возможность паразитирования, размножения и образования колоний.

• Адгезивные молекулы – поверхностные химические структуры микробных клеток белковой или полисахаридной природы. Адгезины обеспечивают прочность взаимодействия микробов с определённы- ми клетками макроорганизма.

•  Колонизация – размножение и образование большого количества однородных микробов (колоний). Этому способствуют также многие экзотоксины.

Факторы зашиты. К факторам защиты возбудителя от бактерицидных механизмов организма хозяина относятся:

♦ капсулы, защищающие микроб от фагоцитоза (у возбудителей сибирской язвы, гонореи, туберкулёза);

♦ факторы, угнетающие различные стадии фагоцитоза и реакции иммунитета (каталаза, протеаза, коагулаза).

Токсины

Токсины – вещества, оказывающие повреждающее действие на клетки и ткани организма хозяина. Известно множество бактериальных токсинов. Их подразделяют на эндогенные (эндотоксины) и экзогенные (экзотоксины).

•  Эндотоксины – вещества, выделяемые бактериями в среду обитания при их разрушении. Образование токсинов контролируется генами хромосом и плазмидами (Col, F, R), которые включают в себя tох-транспозоны или фаги. Эндотоксины являются липополисахаридами (ЛПС). Они относятся к основным структурным компонентам внешней мембраны практически всех грамотрицательных бактерий. Биологическая активность эндотоксина определяется его гидрофобным компонентом – липидом A.

•  Экзотоксины – вещества, выделяемые в окружающую среду микроорганизмами в процессе их жизнедеятельности. В зависимости от объекта воздействия в эукариотических клетках, экзотоксины подразделяют на мембранотоксины и токсины, влияющие на внутриклеточные структуры.

♦ Действующие на цитолемму мембранотоксины обеспечивают повышение её проницаемости или деструкцию. К основным мембранотоксинам относят: ферменты (нейраминидаза, гиалуронидаза, фосфолипазы, сфингомиелиназы), амфифильные соединения (лизофосфолипиды).

♦ Влияющие на внутриклеточные структуры токсины. В молекуле экзотоксинов этой подгруппы имеется две функционально различные части: рецепторная и каталитическая. Экзотоксины обладают исключительно высокой специфичностью действия и обеспечивают развитие характерных синдромов (при ботулизме, столбняке, дифтерии и пр.).

УСЛОВИЯ ВОЗНИКНОВЕНИЯ ИНФЕКЦИИ

Условия возникновения инфекции определяются входными воротами инфекции, путями её распространения в организме, механизмами противоинфекционной резистентности.

Входные ворота

Входные ворота инфекции – место проникновения микробов в макроорганизм.

•  Кожные покровы (например, для возбудителей малярии, сыпного тифа, кожного лейшманиоза).

•  Слизистые оболочки дыхательных путей (для возбудителей гриппа, кори, скарлатины и др.).

•  Слизистые оболочки ЖКТ (например, для возбудителей дизентерии, брюшного тифа).

•  Слизистая оболочка мочеполовых органов (для возбудителей гонореи, сифилиса и др.).

•  Стенки кровеносных и лимфатических сосудов, через которые возбудитель поступает в кровь или лимфу (например, при укусах членистоногих и животных, инъекциях и хирургических вмешательствах).

Входные ворота могут определять нозологическую форму заболевания. Так, внедрение стрептококка в области миндалин вызывает ангину, через кожу – рожу или пиодермию, в области матки – эндометрит.

Пути распространения бактерий

Известны следующие пути распространения бактерий в организме.

•  По межклеточному пространству (благодаря бактериальной гиалуронидазе или дефектам эпителия).

•  По лимфатическим сосудам – лимфогенно.

•  По кровеносным сосудам – гематогенно.

•  По жидкости серозных полостей и спинномозгового канала. Большинство возбудителей имеет тропность к определённым тканям макроорганизма. Это определяется наличием молекул адгезии у микробов и специфических рецепторов у клеток макроорганизма.

Патогенез

В механизме развития инфекционного процесса ключевую роль играет взаимодействие возбудителей болезней и фагоцитов. Возбудители некоторых инфекций обладают резистентностью к эффекторным механизмам фагоцитов и даже способны размножаться в них (некоторые риккетсии, простейшие, вирусы и микобактерии). Вирусы могут проникать в фагоцитирующие клетки и изменять их функциональную активность.

ЗВЕНЬЯ ПАТОГЕНЕЗА

Основными звеньями механизма развития инфекционного процесса являются лихорадка, воспаление, гипоксия, нарушения обмена веществ, а также расстройства функций тканей, органов и их систем.

Лихорадка. Возбудители инфекций при помощи первичных пирогенов стимулируют синтез и высвобождение лейкоцитарных цитокинов, инициирующих лихорадку (подробнее см. раздел «Лихорадка», глава 6). Воспаление. Воспаление развивается в ответ на внедрение в организм флогогенного агента – возбудителя инфекции (подробнее см. главу 5 «Воспаление»).

Гипоксия (подробнее см. главу 15 «Гипоксия»). Тип развивающейся при инфекционном процессе гипоксии во многом зависит от особенностей возбудителя. Так, респираторная гипоксия может возникать в результате угнетающего действия ряда токсинов на дыхательный центр; циркуляторная – следствие нарушения микроциркуляции. Гемическая гипоксия может развиваться за счёт гемолиза эритроцитов (например, при малярии). Тканевая гипоксия формируется вследствие разобщения окисления и фосфорилирования под действием эндотоксинов.

Нарушения метаболизма. На начальных этапах инфекционного процесса преобладают процессы катаболического характера: протеолиз, липолиз, гликогенолиз. На этапе выздоровления катаболические реакции сменяются стимуляцией анаболических процессов.

РАССТРОЙСТВА ФУНКЦИЙ

Нервная система. Микробная инвазия вызывает развитие стресса и активацию ЦНС, которая при значительной интоксикации сменяется её угнетением.

Иммунная система. Активация иммунной системы направлена, в первую очередь, на формирование иммунитета. Однако, в ходе инфекционного процесса могут развиваться иммунопатологические реакции: аллергические, иммунной аутоагрессии, временные иммунодефициты.

•  Аллергические реакции. Наиболее часто возникают реакции гиперчувствительности третьего типа (по Джеллу и Кумбсу). Иммунокомплексные реакции возникают при массированном высвобождении Аг в результате гибели микроорганизмов в уже сенсибилизированном организме хозяина. Так, вызванный иммунными комплексами гломерулонефрит часто осложняет стрептококковую инфекцию.

•  Реакции иммунной аутоагрессии возникают при сходстве Аг хозяина и микроорганизма, модификации под влиянием микробных факторов Аг организма, интеграции вирусной ДНК с геномом хозяина.

•  Приобретённые иммунодефициты, как правило, преходящи. Исключение составляют заболевания, при которых вирус массированно поражает клетки иммунной системы (например, при СПИДе), блокируя формирование иммунного ответа.

Сердечно-сосудистая система. При инфекционном процессе могут развиваться аритмии, коронарная недостаточность, сердечная недостаточность, нарушения микроциркуляции. Основные причины развития названных нарушений – микробные токсины, дисбаланс ионного и водного обмена, изменение состояния крови. Внешнее дыхание. При инфекционном процессе возможно усиление функции дыхательной системы, сменяющееся её угнетением. Основные причины: подавление токсинами активности нейронов дыхательного центра, поражение возбудителями органов дыхания.

Периоды течения инфекции

В развитии инфекционного процесса выделяют несколько периодов: инкубационный, продромальный, основных проявлений и завершения.

Инкубационный период

Инкубационный период – интервал времени от инфицирования макроорганизма до появления первых клинических признаков болезни. Он характеризуется размножением и избирательным накоплением микроорганизмов в определённых органах и тканях. Длительность инкубационного периода – от нескольких часов (при острых кишечных инфекциях) до нескольких лет (при СПИДе, прионных инфекциях) – определяется, в основном, биологическими свойствами возбудителей, в силу чего продолжительность этого периода считают их видовым признаком.

Продромальный период

Продромальный период – этап от появления первых клинических неспецифических проявлений болезни до полного развития её симптомов. Этот период проявляется снижением эффективности адаптивных механизмов организма и нарастанием степени патогенности возбудителя. Клинические проявления на этом этапе не имеют характерных для данной инфекции черт. К ним относятся недомогание, дискомфорт, головная боль, лихорадка, мышечные и суставные боли. Продромальный период выявляется не при всех инфекционных заболеваниях и обычно длится от нескольких часов до нескольких суток.

Период основных проявлений

Период основных проявлений (разгара) болезни характеризуется развитием типичных для данной болезни признаков. Они зависят от патогенных свойств возбудителя и характера ответных реакций организма.

Продолжительность этого периода колеблется в широких пределах. Для многих инфекционных болезней (корь, скарлатина, тифы) характерна относительно постоянная длительность этого периода.

Период завершения

Период завершения имеет несколько вариантов: выздоровление, гибель организма, развитие осложнений, а также бациллоносительство.

•  Выздоровление наступает при благоприятном окончании болезни, происходит постепенное снижение выраженности и исчезновение основных клинических признаков. Выздоровление может быть полным и неполным.

♦ Полное выздоровление завершается удалением из организма возбудителя (санацией). Как правило, формируется иммунитет, обеспечивающий невосприимчивость организма к данной инфекции при его повторном инфицировании.

♦ Неполное выздоровление характеризуется сохранением остаточных явлений заболевания.

•  Осложнения (специфические и неспецифические) могут развиться в любом периоде заболевания.

♦ К специфическим осложнениям относят те, развитие которых непосредственно связано с основными звеньями патогенеза (например, перфорация стенки кишечника и кишечное кровотечение при брюшном тифе; гиповолемический шок при холере).

♦ К неспецифическим осложнениям относят состояния, вызванные вторичной инфекцией или суперинфекцией.

•  Бациллоносительство. В ряде случаев формируется бациллоносительство – определённый вид адаптации и взаимодействия микро- и макроорганизма, при котором происходит персистенция возбудителя инфекции.

Механизмы защиты организма от возбудителей инфекции

Широкий спектр клинических проявлений во многом зависит от эффективности защитных систем макроорганизма. Механизмы и факторы макроорганизма, препятствующие проникновению и жизнедеятельности в нём возбудителя подразделяют на две группы:

♦ неспецифические (играющие роль при контакте со всеми или многими возбудителями).

♦ специфические (направленные против конкретного микроорганизма).

НЕСПЕЦИФИЧЕСКИЕ ФОРМЫ ЗАЩИТЫ

Неспецифическая защита организма от возбудителей выступает в качестве первого барьера на пути внедрения возбудителей. К важнейшим факторам неспецифической защиты организма относят барьерную функцию и бактерицидные факторы кожи и слизистых оболочек, лейкоциты, гуморальные механизмы, рефлекторные защитные реакции.

Барьеры и бактерицидные факторы

Барьерная функция и бактерицидные факторы кожи и слизистых оболочек – первая линия неспецифической защиты организма.

•  Кожа имеет защитный роговой слой, при десквамации которого удаляется значительное количество бактерий. Барьерную функцию выполняет также мерцательный эпителий бронхов, щёточная каём- ка эпителия слизистой оболочки кишечника. Определённая защитная роль принадлежит гистогематическим и гематоэнцефалическому барьерам, мембранам клеток.

•  Микрофлора кожи и слизистых оболочек. Нормальная микрофлора по количеству и соотношению друг с другом выполняет существенную антимикробную функцию. Напротив, дисбактериоз способствует проникновению в организм микробов-паразитов.

•  Бактерицидные свойства кожи и слизистых оболочек обусловлены наличием на их поверхности секретов, содержащих лизоцим, секреторные IgA и IgM, гликопротеины. Важнейшее значение среди них имеет IgA. Он блокирует связывающие участки на поверхности бактерий и препятствует адгезии к эпителиальным клеткам.

•  Наличие жирных кислот на поверхности кожи создаёт низкий pH. Кроме того, потовые железы вырабатывают молочную кислоту (МК), которая препятствует жизнедеятельности многих микроорганизмов.

•  Низкий pH желудочного сока оказывает бактерицидное действие. В результате желудок является единственной частью ЖКТ, который почти полностью свободен от живых бактерий.

Лейкоциты и фагоцитоз

Лейкоциты – мощный барьер для большинства микробов. Мононуклеары и гранулоциты (прежде всего – нейтрофилы) оказывают эффективное неспецифическое бактерицидное действие на многие микроорганизмы как непосредственно, так и при помощи лейкокинов (подробнее см. главу 5 «Воспаление» и главу 16 «Иммунопатологические состояния»). Фагоцитоз – один из главных механизмов противоинфекционной защиты макроорганизмов. В процессе фагоцитоза в лейкоцитах активизируются механизмы инактивации и деструкции микробов. Комплекс этих механизмов получил название «микробоцидной системы фагоцитов». Эта система представлена кислородзависимой и кислороднезависимой подсистемами.

•  Кислородзависимая подсистема. Главные компоненты этой подсистемы – миелопероксидаза, каталаза и активные формы кислорода.

♦ Миелопероксидаза находится в азурофильных гранулах нейтрофилов и лизосомах моноцитов. Взаимодействие миелопероксидазы с H2O2 сопровождается образованием сильных окислителей, происходит окисление галоидов, йодирование и хлорирование бактериальных металлов, что приводит к гибели микроорганизмов.

♦ Каталаза реагирует с H2O2 с образованием активных форм кислорода. Миелопероксидазная и каталазная системы оказывают в процессе фагоцитоза высокоэффективное деструктивное действие на бактерии, вирусы, грибы и микоплазмы.

•  Кислороднезависимая подсистема. Основные компоненты этой подсистемы представлены лизоцимом, лактоферрином, катионными белками, Н+-гиперионией, гидролазами лизосом, β-лизинами, факторами комплемента, системой ИФН.

♦ Лизоцим (мурамидаза) расщепляет мураминовую кислоту пептидогликанов оболочек микробов.

♦ Лактоферрин в ненасыщенной ионами железа форме оказывает на микроорганизмы, заключенные в фагосомах, бактериостатическое действие. Последнее достигается за счёт хелатирующего связывания железа микробов, играющего для них роль важного ростового фактора.

♦ Катионные белки обладают бактерицидным действием, в основном, на грамположительные микробы, заключенные в фаголизосомах.

♦ Ацидоз

❖ В диапазоне pH 4,0-6,5 ацидоз оказывает бактерицидное и бактериостатическое действие.

❖ При pH 4,0-4,5 подавляет формирование поверхностного заряда бактерий. Это сопровождается торможением мембранных процессов, что и приводит к гибели бактерий.

❖ Накопление H+ сопровождается образованием в фагоцитах нитритов, хлораминов, альдегидов, синглетного кислорода (1O2) и других факторов, оказывающих выраженный бактерицидный эффект.

❖ В условиях ацидоза повышается проницаемость мембран лизосом и гидролитические свойства их ферментов.

♦ Гидролазы находятся в первичных лизосомах в неактивном состоянии и активируются в условиях ацидоза. Лизосомальные ферменты осуществляют деструкцию компонентов микробов до элементарных соединений.

Бактерицидные и бактериостатические гуморальные механизмы

К гуморальным бактерицидным и бактериостатическим механизмам организма относятся лизоцим, лактоферрин, трансферрин, β-лизины, факторы комплемента, система ИФН.

♦ Лизоцим эффективно разрушает мураминовую кислоту пептидогликанов клеточной стенки грамположительных бактерий.

♦ Лактоферрин и трансферрин нарушают метаболизм железа в микробах.

♦ β-Лизины бактерицидны для большинства грамположительных бактерий.

♦ Факторы комплемента оказывают опсонизирующее действие, способствуя фагоцитозу микроорганизмов.

♦ Система ИФН обеспечивает неспецифическую противовирусную активность.

Рефлекторные защитные реакции. При помощи рефлекторных защитных реакций типа кашля и рвоты из дыхательных путей и желудка удаляются многие возбудители инфекции.

СПЕЦИФИЧЕСКИЕ ЗАЩИТНЫЕ МЕХАНИЗМЫ

Наиболее эффективная защита организма от инфекции – активация иммунных механизмов. Микроорганизмы содержат антигенные детерминанты, которые распознаёт иммунная система организма, развивается гуморальный и клеточный иммунитет.

Входные ворота инфекции и особенности возбудителя во многом определяют форму иммунного ответа.

•  Внедрение микроорганизмов, которые размножаются внеклеточно, вызывает преимущественно гуморальный иммунный ответ.

•  Попадание в организм микробов, способных размножаться внутриклеточно, сопровождается активацией клеточного иммунитета.

•  Вирусы, распространяющиеся гематогенно (например, полиомиелита, кори, эпидемического паротита), нейтрализуются преимущественно факторами гуморального иммунитета.

•  При внутриклеточном размножении вирусов основное значение в противовирусной защите имеет клеточный иммунитет.

•  При грибковых заболеваниях формируется преимущественно клеточный иммунитет.

•  Для возбудителей протозойных инфекций характерно разнообразие антигенного состава. Глистные инвазии сопровождаются преимущественно стимуляцией синтеза IgE.

Принципы терапии инфекционного процесса

Терапию инфекционных заболеваний проводят на основе этиотропного, патогенетического и симптоматического принципов лечения. Этиотропная терапия заключается в воздействии на возбудителя. Для этого применяют различные группы препаратов:

•  Антибактериальные средства (например, антибиотики, сульфаниламиды, хинолоны, производные нитрофурана, бактериофаги).

•  Противовирусные препараты (например, Ig, производные адамантана, ИФН).

•  Противогрибковые средства (например, азолы, гризеофульвин).

•  Антипротозойные препараты (например, сульфаниламиды, метронидазол).

Патогенетическое лечение имеет целью блокаду механизма развития инфекционного процесса.

•  Дезинтоксикационная терапия (например, применение гемодилюции, гемодиализа, плазмафереза).

•  Противовоспалительное лечение (см. главу 5 «Воспаление»).

•  Иммунотерапия и иммунокоррекция (например, с помощью специфических сывороток, вакцин, иммуномодуляторов, десенсибилизирующих воздействий).

•  Нормализация нарушенных функций тканей, органов и их систем (например, ССС, дыхательной, пищеварительной, нервной).

•  Коррекция нарушений гомеостаза (КЩР, содержания ионов, объё- ма и реологических свойств циркулирующей крови, pO2).

Симптоматическое лечение направлено на облегчение состояния пациента и устранение у него тягостных, болезненных ощущений, усугубляющих течение заболевания. С этой целью используют, например, препараты, устраняющие головную боль, чувства эмоционального напряжения или страха, снотворные и противоболевые препараты.

ГЛАВА 8. НАРУШЕНИЯ УГЛЕВОДНОГО ОБМЕНА

Выделяют несколько типовых форм патологии углеводного обмена: гипогликемии, гипергликемии, гликогенозы, гексоз- и пентоземии, агликогенозы.

ГИПОГЛИКЕМИИ

Гипогликемии – состояния, характеризующиеся снижением уровня глюкозы плазмы крови (ГПК) ниже нормы.

В норме уровень ГПК натощак колеблется в диапазоне 3,3-5,5 ммоль/л.

Этиология

Патология печени. При большинстве наследственных и приобретён- ных заболеваний печени нарушается депонирование в ней глюкозы в виде гликогена и снижается интенсивность глюконеогенеза. В результате организм не способен поддерживать долгое время уровень ГПК в пределах нормы без поступления глюкозы извне. Нарушения пищеварения. Нарушения полостного и пристеночного расщепления и абсорбции углеводов приводят к развитию гипогликемии.

Патология почек. Гипогликемия развивается при нарушении реабсорбции глюкозы в проксимальных канальцах нефрона почек из-за следующих причин:

•  Ферментопатий – дефицита или низкой активности ферментов, участвующих в реабсорбции глюкозы.

•  Мембранопатий – нарушения структуры и физико-химического состояния мембран вследствие дефицита или дефектов мембранных гликопротеинов, участвующих в реабсорбции глюкозы. Названные причины приводят к развитию синдрома, характеризующегося гипогликемией и глюкозурией («почечный диабет»).

Эндокринопатии. Основные причины развития гипогликемии при эндокринопатиях: недостаток гипергликемизирующих гормонов или избыток инсулина.

•  К гипергликемизирующим гормонам относят глюкокортикоиды, гормоны щитовидной железы, СТГ, катехоловые амины и глюкагон.

•  Избыток инсулина активирует утилизацию глюкозы клетками, угнетает глюконеогенез, подавляет гликогенолиз. Указанные эффекты наблюдаются при инсулиномах или передозировке инсулина.

Углеводное голодание наблюдается в результате длительного общего голодания. Дефицит в пище только углеводов не приводит к гипогликемии в связи с активацией глюконеогенеза.

Длительная интенсивная физическая работа обусловливает истощение запасов гликогена, депонированного в печени и скелетных мышцах.

Клинические проявления гипогликемии

Возможные проявления гипогликемии: гипогликемическая реакция, синдром или кома.

ГИПОГЛИКЕМИЧЕСКАЯ РЕАКЦИЯ

Гипогликемическая реакция – ответ организма на острое временное снижение уровня ГПК ниже нормы.

•  Причины:

♦ острая гиперсекреция инсулина через 2-3 сут после начала голодания;

♦ острая гиперсекреция инсулина через несколько часов после нагрузки глюкозой (с диагностической или лечебной целью, а также после переедания сладкого, особенно у лиц пожилого и старческого возраста).

•  Проявления: низкий уровень ГПК, лёгкое чувство голода, мышечная дрожь, тахикардия. Указанные симптомы в покое выражены слабо и выявляются при дополнительной физической нагрузке или стрессе.

ГИПОГЛИКЕМИЧЕСКИЙ СИНДРОМ

Гипогликемический синдром – стойкое снижение ГПК ниже нормы, сочетающееся с нарушением жизнедеятельности.

Проявления гипогликемического синдрома могут быть адренергическими (обусловленными избыточной секрецией катехоламинов) и нейрогенными (вследствие расстройств функций ЦНС).

•  Адренергические проявления: чувство голода, тревога, страх смерти, мышечная дрожь, тахикардия, потливость.

•  Нейрогенные проявления: головная боль, спутанность сознания, головокружение, психическая заторможённость, нарушение зрения.

ГИПОГЛИКЕМИЧЕСКАЯ КОМА

Гипогликемическая кома – состояние, характеризующееся падением уровня ГПК ниже нормы (как правило, менее 2,0- 1,5 ммоль/л), потерей сознания и значительными расстройствами жизнедеятельности.

Патогенез гипогликемической комы

•  Нарушается энергетическое обеспечение клеток, особенно нейронов, вследствие ряда механизмов.

♦ Недостатка глюкозы.

♦ Дефицита короткоцепочечных метаболитов свободных жирных кислот – ацетоуксусной и β-гидрооксимасляной, которые могут обеспечить нейроны энергией даже в условиях гипогликемии. Кетонемия развивается лишь через несколько часов и при острой гипогликемии не может устранить дефицит энергии в нейронах.

•  Дисбаланса ионов и воды в клетках вследствие нарушения работы энергозависимых переносчиков ионов: потеря K+, накопление H+, Na+, Ca2+, воды.

•  Нарушения электрогенеза в связи с дисбалансом ионов. В результате этого возникают расстройства функций ЦНС (в том числе – потеря сознания) и ССС.

Принципы терапии гипогликемий

Принципы устранения гипогликемического синдрома и комы: этиотропный, патогенетический и симптоматический. Этиотропное лечение направлено на восполнение дефицита глюкозы и устранение причины его возникновения.

•  Ликвидация гипогликемии достигается введением в организм глюкозы.

•  Терапия основного заболевания, вызвавшего гипогликемию (болезней печени, почек, ЖКТ, желёз внутренней секреции).

Патогенетическое лечение направлено на блокирование главных патогенетических звеньев (расстройств энергообеспечения, повреждения мембран и ферментов, нарушений электрогенеза, водно-электролитного дисбаланса).

Симптоматическое лечение направлено на устранение симптомов, усугубляющих состояние пациента (сильной головной боли, чувства страха смерти, резких колебаний АД, тахикардии).

ГЛИКОГЕНОЗЫ

Гликогенозы – наследственные или врожденные нарушения углеводного обмена, связанные с накоплением избытка гликогена в клетках и расстройством их функций.

Гликогенозы развиваются вследствие мутаций генов, кодирующих синтез ферментов расщепления или образования гликогена. Почти все гликогенозы наследуются по аутосомно-рецессивному типу.

ГИПЕРГЛИКЕМИИ

Гипергликемии – состояния, характеризующиеся увеличением уровня ГПК выше нормы.

Этиология

Эндокринопатии – наиболее частая причина гипергликемии. В данном случае они обусловлены избытком гипергликемизирующих гормонов или дефицитом эффектов инсулина.

Неврологические и психогенные расстройства. Состояния психического возбуждения, стресса, каузалгии характеризуются активацией симпатикоадреналовой, гипоталамо-гипофизарно-надпочечниковой и тиреоидной систем. Гормоны этих систем (катехоламины, глюкокортикоиды, T4 и T3) активируют гликогенолиз и глюконеогенез, угнетают гликогенез.

Переедание. При употреблении легкоусвояемых углеводов в большом количестве уровень ГПК быстро повышается и превышает возможность гепатоцитов образовывать гликоген. Кроме того, избыток углеводсодержащей пищи стимулирует гликогенолиз в гепатоцитах. Патология печени . При печёночной недостаточности может развиваться гипергликемия после приёма пищи в связи с неспособностью гепатоцитов трансформировать глюкозу в гликоген.

Клинические проявления гипергликемии

Возможные проявления гипергликемии: гипергликемический синдром и гипергликемическая кома.

ГИПЕРГЛИКЕМИЧЕСКИЙ СИНДРОМ

Гипергликемический синдром – состояние, характеризующееся длительным увеличением уровня ГПК выше нормы, сочетающееся с нарушением жизнедеятельности.

Гипергликемический синдром включает ряд взаимосвязанных признаков.

•  Глюкозурия – результат превышения возможности канальцевой реабсорбции глюкозы из первичной мочи при уровне ГПК более 10 ммоль/л (физиологического почечного порога для глюкозы).

•  Полиурия – образование и выделение мочи в количестве, превышающем норму (более 1000-1200 мл/сут), что связано с повышением осмоляльности мочи за счёт наличия в ней глюкозы.

•  Гипогидратация – уменьшение содержания жидкости в организме вследствие полиурии.

•  Полидипсия – повышенное употребление жидкости вследствие жажды, обусловленной гипогидратацией и повышением осмоляльности плазмы крови.

•  Артериальная гипотензия обусловлена гиповолемией вследствие гипогидратации организма.

ГИПЕРГЛИКЕМИЧЕСКАЯ КОМА

Гипергликемическая кома рассмотрена ниже в разделе «Сахарный диабет».

Принципы устранения гипергликемии

Этиотропная терапия является основной и направлена на ликвидацию причины гипергликемии.

САХАРНЫЙ ДИАБЕТ

Сахарный диабет – группа метаболических заболеваний, обусловленных снижением секреции инсулина или его эффектов даже при нормальном либо повышенном содержании его в крови, а также сочетанием этих факторов.

Сахарный диабет (СД) – одно из наиболее тяжёлых заболеваний, чреватых тяжёлыми осложнениями, инвалидизацией и смертью. Заболеваемость колеблется в разных странах от 1 до 3% (в России около 2%), а у лиц с ожирением достигает 15-25%. Ожирение, СД, артериальная гипертензия и дислипидемия составляют так называемый «метаболический синдром» или «смертельный квартет». По данным экспертов ВОЗ, сахарный диабет увеличивает общую смертность пациентов в 2-3 (!) раза. Примерно в 3 раза чаще у них выявляется сердечно-сосудистая патология, в 10 раз – слепота, в 20 раз – гангрена конечностей. СД – одна из причин поражений почек, ведущих к смерти пациентов.

Виды сахарного диабета

Согласно классификации ВОЗ выделяют СД двух типов.

•  СД 1-го типа обусловлен дефицитом инсулина – абсолютной инсулиновой недостаточностью. Выделяют два основных подтипа СД 1-го типа – аутоиммунный (иммуноопосредованный) и идиопатический (неизвестной этиологии).

•  СД 2-го типа обусловлен недостаточностью эффектов инсулина независимо от его содержания в крови – относительной инсулиновой недостаточностью.

Этиология

ПРИЧИНЫ

Дефицит инсулина может возникнуть под влиянием факторов биологической, химической, физической природы, а также при воспалении поджелудочной железы.

•  Биологические факторы

 Генетические дефекты β-клеток островков Лангерханса. Генетические дефекты системы MHC обусловливают включение иммунного аутоагрессивного повреждения поджелудочной железы или репрессию генов, кодирующих синтез инсулина.

 Иммунные факторы. Аутоагрессивные иммуноглобулины и цитотоксические T-лимфоциты способны повреждать β-клетки. Обнаруживают несколько типов специфических АТ: к цитоплазматическим Аг, к белку цитоплазматической мембраны с молекулярной массой 64 кДа, к инсулину.

 Вирусы, тропные к β-клеткам: Коксаки, гепатита, кори, ветряной оспы, эпидемического паротита, краснухи. Например, при внутриутробной краснухе СД развивается примерно у 20% новорождённых. Вирусы оказывают прямое цитолитическое действие и инициируют аутоиммунные процессы.

 Эндогенные токсичные вещества. В результате нарушения пиримидинового обмена образуется аллоксан, который блокирует синтез инсулина.

•  Химические факторы: высокие дозы этанола, некоторые противоопухолевые ЛС.

•  Физические факторы: проникающая радиация, механическая травма, сдавление опухолью.

•  Воспалительные процессы в поджелудочной железе, вызванные факторами химической, физической или биологической природы. Хронические панкреатиты примерно в 30% случаев являются причиной инсулиновой недостаточности.

Недостаточность эффектов инсулина развивается под влиянием контринсулярных факторов, а также вследствие дефектов инсулиновых рецепторов и пострецепторных нарушений в клетках-мишенях.

•  Контринсулярные факторы.

♦ Чрезмерная активация инсулиназы гепатоцитов.

♦ Повышение содержания в крови контринсулярных гормонов при опухолях соответствующих эндокринных желёз или при длительном стрессе.

♦ Повышенная концентрация в плазме крови белков, связывающих молекулы инсулина.

•  Факторы, вызывающие дефекты рецепторов инсулина.

♦ Ig, имитирующие структуру «активного центра» молекулы инсулина. Они взаимодействуют с рецепторами инсулина и блокируют их.

♦ Ig, разрушающие рецепторы инсулина или перирецепторную зону мембран клеток-мишеней.

♦ Длительный избыток инсулина, вызывающий уменьшение количества рецепторов на клетках-мишенях.

♦ Свободные радикалы и продукты СПОЛ, повреждающие рецепторы.

•  Факторы, нарушающие реализацию эффектов инсулина в клеткахмишенях.

♦ Избыток ферментов, разрушающих эффекторные протеинкиназы.

♦ Чрезмерное образование активных форм кислорода, свободных радикалов и гидроперекисей липидов, подавляющих внутриклеточные эффекты инсулина: транспорт глюкозы в клетки, образование цАМФ, трансмембранный перенос ионов Ca2+ и Mg2+.

ФАКТОРЫ РИСКА

•  Избыточная масса тела, сочетающаяся с повышением инсулинорезистентности тканей-мишеней и стимуляцией продукции контринсулярных гормонов. Это избыточно активирует синтез инсулина β-клетками поджелудочной железы, приводя к их «истощению» и повреждению.

•  Артериальная гипертензия, приводящая к нарушению микроциркуляции в поджелудочной железе.

•  Женский пол.

•  Хронический стресс, сопровождающийся стойким повышением уровней в крови контринсулярных гормонов.

Патогенез сахарного диабета

В патогенезе СД выделяют два основных инициальных звена: дефицит инсулина и недостаточность эффектов инсулина.

ДЕФИЦИТ ИНСУЛИНА

Дефицит инсулина имеет ведущее значение в патогенезе СД 1-го типа и меньшее – при некоторых вариантах СД 2-го типа. В основе дефицита инсулина лежит развитие иммуноагрессивного процесса.Обычно он длится несколько лет и сопровождается постепенной деструкцией β-клеток. Симптомы диабета появляются при разрушении примерно 75-80% β-клеток. Оставшиеся 20-25% клеток обычно повреждаются в течение последующих 2-3 лет. Выделяют два варианта развития иммуноагрессивного процесса.

•  При одном из них повреждение поджелудочной железы изначально носит аутоиммунный характер, при котором образуются АТ к неиз- менённым β-клеткам. Такой иммуноагрессивный процесс развивается по следующему механизму:

♦ Внедрение в организм генетически предрасположенных к СД лиц носителей чужеродных Аг, обычно вирусов.

♦ Формирование иммунного ответа с образованием АТ и цитотоксических лимфоцитов к чужеродным Аг.

♦ Специфические АТ и лимфоциты действуют на антигенные структуры β-клетки, имеющие сходное строение с чужеродным Аг. Этот феномен обозначается как «перекрёстная иммуноагрессивная реакция». В ходе этой реакции β-клетки разрушаются, а отдельные белки плазмолеммы также денатурируются и становятся аутоантигенными.

•  При другом варианте поджелудочная железа первично повреждается под влиянием факторов химической, физической или инфекционной природы. В дальнейшем запускаются иммунные аутоагрессивные механизмы:

♦ Повреждение β-клеток химическими, физическими и инфекционными агентами сопровождается высвобождением «чужих» для иммунной системы белков (в норме они находятся только внутриклеточно и в кровь не попадают): цитоплазматических ганглиозидов, белков теплового шока, проинсулина. Некоторые белки денатурируются и становятся аутоантигенными.

♦ Формирование иммунного ответа с образованием АТ и цитотоксических лимфоцитов к денатурированным и попавшим в кровь внутриклеточным белкам.

♦ Аутоагрессивные АТ и лимфоциты действуют на антигенные структуры собственных β-клеток, что сопровождается их деструкцией.

НЕДОСТАТОЧНОСТЬ ЭФФЕКТОВ ИНСУЛИНА

Недостаточность эффектов инсулина имеет ведущее значение в патогенезе СД 2-го типа и может развиваться при нормальном, пони-

женном и повышенном его синтезе и инкреции в кровь. Это является следствием инактивации инсулина, либо снижением чувствительности к нему рецепторов клеток-мишеней.

Факторы инактивации инсулина

•  Инсулиназа.

•  Протеолитические ферменты, поступающие из обширных очагов воспаления (например, при флегмоне, перитоните, инфицировании ожоговой поверхности).

•  АТ к инсулину крови.

•  Вещества, связывающие молекулы инсулина.

♦ Плазменные ингибиторы инсулина белковой природы (отдельные фракции α- и β-глобулинов).

♦ ЛПНП инактивируют инсулин с образованием крупномолекулярного комплекса.

Инсулинорезистентность

Инсулинорезистентность – уменьшение чувствительности к инсулину клеток-мишеней.

Выделяют рецепторные и пострецепторные механизмы феномена.

•  Рецепторные механизмы.

♦ «Экранирование» (закрытие) инсулиновых рецепторов иммуноглобулинами.

♦ Деструкция или изменение конформации рецепторов инсулина под влиянием противорецепторных АТ, избытка свободных радикалов и продуктов СПОЛ.

•  Пострецепторные механизмы.

♦ Нарушение фосфорилирования протеинкиназ клеток-мишеней, что нарушает внутриклеточную «утилизацию» глюкозы.

♦ Дефекты трансмембранных переносчиков глюкозы, что выявляют, например, у пациентов с СД в сочетании с ожирением.

Проявления сахарного диабета

У пациентов с СД нарушаются все виды метаболизма, что сопровождается развитием осложнений со стороны тканей, органов и их систем, а также организма в целом.

НАРУШЕНИЯ ОБМЕНА ВЕЩЕСТВ

Инсулин принимает участие в регуляции всех видов обмена веществ, поэтому при СД все они расстраиваются.

Углеводный обмен

Нарушения углеводного обмена могут проявляться гипергликемией, глюкозурией и гиперлактатацидемией.

•  Гипергликемия возникает вследствие недостаточности эффектов инсулина и нарушения утилизации глюкозы клетками.

•  Глюкозурия является, в основном, следствием гипергликемии.

•  Гиперлактатацидемия – развивается вследствие торможения катаболизма лактата в цикле Кребса, нарушения ресинтеза гликогена из лактата.

Обмен белков

Нарушения белкового обмена при СД характеризуются гиперазотемией и азотурией.

•  Гиперазотемия – увеличение содержания в крови небелковых азотистых соединений. Гиперазотемия обусловлена усилением катаболизма белка, который при дефиците глюкозы в клетках служит источником энергии. Небелковый азот представлен азотом мочевины, аминокислот, мочевой кислоты, креатинина, аммиака (остаточный азот).

•  Азотурия – повышение экскреции азотистых соединений с мочой вследствие гиперазотемии.

Жировой обмен

В условиях недостатка глюкозы в клетках жиры становятся основным источником энергии. Нарушения жирового обмена при СД проявляются гиперлипидемией, кетонемией, кетонурией.

•  Гиперлипидемия – увеличение содержания в крови липидов выше нормы (более 8 г/л). Это обусловлено активацией липолиза, торможением транспорта и утилизации липидов клетками, снижением активности ЛПЛазы.

•  Кетонемия – повышение концентрации в крови КТ выше нормы (более 2,5 мг%). К КТ относят ацетон, ацетоуксусную и β-оксимасляную кислоты. Кетонемия, как правило, развивается при дефиците инсулина и обусловлена активацией окисления ВЖК в клетках с образованием КТ.

•  Кетонурия – выделение КТ из организма с мочой – симптом неблагоприятного течения СД. Причина: высокая концентрация в крови КТ, которые хорошо фильтруются в почках.

Водный обмен

Нарушения обмена воды при СД проявляются полиурией и полидипсией.

•  Полиурия обусловлена выведением избытка глюкозы, азотистых соединений, КТ и ионов, что тормозит реабсорбцию жидкос-

ти в канальцах почек. При СД суточный диурез достигает 4000-

10 000 мл.

•  Полидипсия обусловлена гипогидратацией организма и гиперосмией крови в связи с гипергликемией, азотемией, кетонемией, гиперлактатацидемией, повышением содержания отдельных ионов.

Осложнения сахарного диабета

Осложнения СД – патологические процессы и состояния, обусловленные изменениями метаболизма при СД, но не обязательные для него.

Осложнения СД подразделяют на остро протекающие (диабетический кетоацидоз, кетоацидотическая, гиперосмолярная, лактацидотическая и гипогликемическая комы) и развивающиеся в течение длительного времени (месяцы и годы) поздние осложнения (ангиопатии, невропатии, ретинопатии, энцефалопатии, нефропатии и снижение активности факторов ИБН).

ОСТРО ПРОТЕКАЮЩИЕ ОСЛОЖНЕНИЯ

Они развиваются быстро и длительность их обычно небольшая, однако они нередко приводят к летальному исходу. Наиболее частые причины развития острых осложнений: неправильная инсулинотерапия, стрессы, развитие острых или обострений хронических заболеваний.

Диабетический кетоацидоз

Диабетический кетоацидоз развивается при дефиците инсулина. Выраженный кетоацидоз приводит к развитию кетоацидотической комы.

•  Причины: недостаточное содержание в крови инсулина и повышение концентрации контринсулярных гормонов.

•  Факторы риска: невозможность введения достаточной дозы инсулина, стресс, хирургические вмешательства, травмы, злоупотребление алкоголем, беременность, острые или обострение хронических заболеваний.

•  Механизм развития: дефицит энергии в клетках вызывает активацию глюконеогенеза и гликогенолиза, протеолиза и липолиза. В условиях дефицита инсулина нарушается транспорт глюкозы в клетки и нарастает гипергликемия, а катаболизм ВЖК протекает с образованием КТ и развитием ацидоза.

Гиперосмолярная кома

Гиперосмолярная (гипергликемическая некетоацидотическая) кома наиболее характерна для пожилых пациентов с СД 2-го типа. Она

развивается существенно медленнее, чем кетоацидотическая, однако летальность при ней выше.

Гипогликемическая кома

•  Причины

♦ Передозировка инсулина.

♦ Задержка очередного приёма пищи или голодание.

♦ Длительная интенсивная физическая нагрузка.

♦ Дефицит контринсулярных гормонов. Это одна из частых причин гипогликемической комы, поскольку синтез глюкагона и катехоламинов у этих пациентов обычно снижен.

Гипогликемия обусловливает нарушение ресинтеза АТФ в нейронах ЦНС и активацию симпатикоадреналовой системы. Катехоламины тормозят развитие тяжёлой гипогликемии, стимулируя гликогенолиз. Также они вызывают тахикардию, аритмии, дрожь, мышечную слабость, неприятные ощущения в области сердца, потливость, заставляющие пациента немедленно принять глюкозу.

При недостаточности компенсаторных возможностей организма развивается гипогликемическая кома с утратой сознания, судорогами, остановкой дыхания, отсутствием сокращений сердца и нарушением гемодинамики.

ПОЗДНИЕ ОСЛОЖНЕНИЯ

Признаки поздних осложнений СД могут появляться через 15-20 лет после начала заболевания. В основе поздних осложнений СД лежат метаболические расстройства в тканях (рис. 8-1).

Ангиопатии

Различают микроангиопатии и макроангиопатии.

Микроангиопатии – патологические изменения в сосудах микроциркуляторного русла.

•  Механизмы развития:

♦ Гликозилирование белков базальных мембран капилляров в условиях гипергликемии.

♦ Утолщение и уплотнение сосудистой стенки под влиянием избытка сорбитола. В норме в сорбитол трансформируется не более 1-2% внутриклеточной глюкозы, а при диабетической гипергликемии уровень конвертации увеличивается в 8-10 раз за счёт активации альдозоредуктазы.

•  Последствия:

♦ Набухание, утолщение и дистрофия эндотелия сосудов.

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A007,pic_0012.jpg,-1,,00000000,)

Рис. 8-1. Поздние осложнения сахарного диабета. [по 4].

♦ Изменение строения белков базальной мембраны сосудов и приобретение ими антигенных свойств, что ведёт к иммуноопосредованному повреждению стенок микрососудов.

♦ Ишемия тканей, обусловленная уменьшением просвета сосудов за счёт снижения образования NO и утолщения сосудистой стенки. Указанные изменения ведут к нарушению транскапиллярного обмена и формированию микротромбов.

Макроангиопатии – развитие склеротических изменений в стенках артерий среднего и крупного калибра.

При СД рано появляется и быстро прогрессирует атеросклероз сосудов.

•  Причины:

♦ Гликозилирование белков базальных мембран и интерстиция стенок сосудов. Модификация белковых молекул стимулирует атерогенез.

♦ Накопление сорбитола в стенке артериальных сосудов.

♦ Повышение уровня атерогенных ЛПНП и снижение уровня антиатерогенных ЛПВП.

♦ Активация синтеза тромбоксана А 2 тромбоцитами, что потенцирует вазоконстрикцию и адгезию тромбоцитов на стенках сосудов.

♦ Стимуляция пролиферации ГМК артериальных сосудов.

•  Последствия: образование, кальцификация и изъязвление атеросклеротических бляшек, тромбообразование и окклюзия артерий, нарушение кровоснабжения тканей с развитием инфарктов и гангрены.

Невропатии

При СД могут возникнуть поражения в любом отделе нервной системы. Наиболее выражены невропатии у пожилых пациентов с длительным течением диабета.

•  Виды диабетических невропатий: периферическая полиневропатия, вегетативная невропатия, радикулопатия, мононевропатия.

•  Основные звенья патогенеза диабетической невропатии:

♦ Гликозилирование белков периферических нервов.

♦ Образование АТ к модифицированным белкам с развитием реакций иммунной аутоагрессии.

♦ Активация в нейронах и шванновских клетках трансформации глюкозы в сорбитол.

♦ Снижение интраневрального кровоснабжения с развитием хронической ишемии и гипоксии нервных структур. Основным фактором ишемизирования нервной ткани считают дефицит вазодилататора NO.

♦ Конкурентное торможение транспорта миоинозитола в нервные клетки избытком глюкозы. Это обусловливает развитие трёх эффектов:

❖ нарушение синтеза миелина и демиелинизацию нервных волокон;

❖ снижение активности Na++-АТФазы нейронов, что потенцирует торможение Na-зависимого транспорта миоинозитола в нервную ткань;

❖ замедление скорости проведения нервных импульсов.

•  Проявления диабетических невропатий.

♦ Периферические полиневропатии характеризуются поражением нескольких нервных стволов и проявляются парестезией стоп, реже – рук; потерей болевой и вибрационной чувствительности, чаще в дистальных отделах нижних конечностей; снижением выраженности рефлексов, особенно – растяжения; невропатическими язвами, эрозиями, некрозом тканей стоп (синдром диабетической стопы).

♦ Вегетативная невропатия проявляется расстройствами ЖКТ (затруднениями глотания, запорами или диареей), дистрофией мочевого пузыря (задержкой мочи), нарушением сосудистого тонуса (постуральными гипотензиями или обмороком), расстройствами сердечной деятельности, нарушениями половой функции (эректильной дисфункцией, снижением либидо и другими расстройствами).

♦ Радикулопатии обусловлены изменениями в корешках спинного мозга. Они характеризуются болями и повышенной чувствительностью по ходу одного или нескольких спинальных нервов (обычно в области грудной клетки и живота).

♦ Мононевропатии возникают при поражении отдельных двигательных нервов, проявляются обратимыми параличами мышц кисти или стопы и парезами мышц, иннервируемых III, IV или VI парой черепных нервов.

Энцефалопатии

•  Причины. Ангиопатии сосудов головного мозга приводят к дегенеративно-дистрофическим изменениям в нейронах головного мозга и инсультам.

•  Проявления:

♦ Нарушение психической деятельности в виде расстройств памяти, раздражительности, плаксивости, апатии, расстройств сна, повышенной утомляемости.

♦ Органические поражения мозга при развитии инсультов.

Ретинопатии

Поражение сетчатки глаза при диабете выявляют примерно у 3% больных в дебюте заболевания, более чем у 40-45% спустя 10 лет, у 97% – после 15 лет болезни.

•  Причины: микроангиопатии в тканях глаза и гипоксия тканей глаза, особенно сетчатки.

•  Виды и проявления.

♦ Непролиферативная ретинопатия (фоновая, простая) составляет более 90% всех диабетических ретинопатий. Она проявляется формированием микроаневризм артериол и венул, микрокровоизлияниями в сетчатую оболочку глаза и стекловидное тело (что может вызвать слепоту), развитием микротромбов с окклюзией сосудов и образованием отёка.

♦ Пролиферативная ретинопатия характеризуется новообразованием сосудов микроциркуляторного русла (стимулируемого гипоксией), прорастающих в стекловидное тело; формированием рубцов и отслойкой сетчатки в регионах крупных кровоизлияний.

Нефропатии

Нарушение функций почек – одна из частых причин инвалидизации и смерти при СД. Диабетическая нефропатия характеризуется:

♦ утолщением и уплотнением стенок артериол клубочков;

♦ утолщением базальных мембран клубочков и канальцев с нарушениями процессов фильтрации, реабсорбции, секреции и экскреции;

♦ повышением АД в результате активации «почечно-ишемического» и «ренопривного» механизмов развития артериальной гипертензии (подробнее см. раздел «Нарушения системного уровня артериального давления», глава 22);

♦ развитием синдрома Киммельштиля-Уилсона, который проявляется склерозом почечной ткани (диабетическим гломерулосклерозом), выраженной протеинурией, нефрогенными отёками, артериальной гипертензией и уремией.

Иммунопатологические состояния

Для СД характерно снижение эффективности системы ИБН. Об этом свидетельствуют данные о более частом развитии и тяжёлом течении у пациентов с СД:

•  инфекционных поражений кожи (с развитием фурункулёза, кар- бункулёза), мочевых путей, лёгких;

•  инфекций, характерных именно для СД:

♦ наружного отита, вызываемого Pseudomonas aeruginosa;

♦ риноцеребрального мукороза, причиной которого являются грибы типа Mucor, может сопровождаться некрозом слизистой оболочки носовых ходов и подлежащих тканей, тромбозом внутренней ярёмной вены и мозговых синусов.

♦ холецистита, развивающегося под влиянием клостридий. Причинами снижения активности иммунной системы и факторов неспецифической защиты организма являются метаболические расстройства и гипоксия, обусловленная нарушением кровообращения, дыхания, гликозилированием Hb и ферментов митохондрий.

ПРОЧИЕ ОСЛОЖНЕНИЯ

У пациентов с СД наблюдают и многие другие осложнения (кардиопатии, катаракта, дислипидемия, нарушения ионного обмена, остео- и артропатии).

Принципы терапии сахарного диабета

Этиотропное лечение направлено на устранение причины СД и условий, способствующих развитию заболевания. Данный подход наиболее рационален на начальном этапе болезни.

Патогенетическая терапия заключается в разрыве патогенетических звеньев СД. В рамках этого принципа решаются следующие задачи.

♦ Контроль и коррекция уровня ГПК. Нормализация содержания глюкозы в течение длительного времени снижает выраженность или устраняет основные метаболические, функциональные и ряд структурных нарушений в организме. Для этого применяют заместительную терапию инсулином и пероральные сахароснижающие препараты.

♦ Коррекция водного и ионного обмена, сдвигов КЩР.

♦ Предотвращение острых осложнений диабета (кетоацидоза, коматозных состояний).

♦ Предотвращение или уменьшение степени выраженности поздних осложнений.

Симптоматическое лечение направлено на устранение или снижение выраженности состояний и симптомов, усугубляющих течение СД и самочувствие пациента: фурункулёза, гиперили гипотензивных реакций, снижения остроты зрения, головной боли, изменений кожи и слизистых оболочек, невропатических болей, расстройств пищеварения.

ГЛАВА 9. НАРУШЕНИЯ ОБМЕНА БЕЛКОВ И НУКЛЕИНОВЫХ КИСЛОТ

Белки и их комплексы выполняют в организме такие важные функции как информационная, рецепторная, каталитическая, структурная и некоторые другие. Нарушения обмена аминокислот и белка приводят к существенным расстройствам функций органов, их систем и организма в целом.

БАЛАНС АЗОТА

Азотистый баланс – суточная разница между поступающим и выделяемым азотом.

Виды азотистого баланса.

•  Нулевой (количество поступающего и выводящегося азота совпадает).

•  Положительный (количество поступающего в организм азота больше, чем выводящегося). Наблюдается как в норме (например, при регенерации тканей или беременности), так и в условиях патологии (например, при гиперпродукции СТГ или полицитемии).

•  Отрицательный (количество поступающего в организм азота меньше, чем выводящегося). Наблюдается, например, при голодании, стрессе, тяжёлом течении СД, гиперкортицизме.

ОСТАТОЧНЫЙ АЗОТ

Интегративный параметр обмена белков и нуклеиновых кислот в организме – содержание небелкового (остаточного) азота крови (табл. 9-1). Аммиак обладает наиболее выраженными патогенными (цитотоксическими) свойствами из всех компонентов остаточного азота. Он беспрепятственно проникает через мембраны клеток, оказывая повреждающее действие на ферменты, компоненты цитозоля и мембран. В норме аммиак инактивируется внутриклеточно, вовлекаясь в реакции аминирования кетокислот с образованием нетоксических веществ. Мочевина сама по себе не обладает токсическим действием. Большая часть мочевины образуется в печени (в орнитиновом цикле, или цикле мочевины) и выводится почками и потовыми железами. При почечной недостаточности большое количество мочевины удаляется из организма через кишечник, где она подвергается катаболизму кишечной флорой с образованием внеклеточного аммиака. Креатин и креатинин. Уровни креатина и креатинина в крови и моче, как правило, существенно меняются при почечной недостаточности, гипотрофии мышц, миозитах и миастении, длительном голодании, СД.

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A008,pic_0013.png,-1,,00000000,)

Таблица 9-1. Содержание небелкового (остаточного) азота в крови (в ммоль/л)

Мочевая кислота является финальным метаболитом обмена пуринов и образуется, главным образом, в гепатоцитах и энтероцитах с участием ксантиноксидазы, а разрушается в кишечнике при участии бактерий с образованием глиоксалевой кислоты и аммиака.

ТИПОВЫЕ НАРУШЕНИЯ БЕЛКОВОГО ОБМЕНА

К типовым нарушениям белкового обмена относят: несоответствие потребностям организма количества и аминокислотного состава поступающего белка, нарушение расщепления белка в ЖКТ, расстройства трансмембранного переноса аминокислот, дефекты метаболизма аминокислот, нарушения содержания белков в плазме крови, нарушения конечных этапов катаболизма белков, диспротеинозы.

Несоответствие потребностям организма количества и аминокислотного состава поступающего белка

Выделяют несколько видов несоответствия количества и состава белка потребностям организма: недостаток или избыток поступления белка в организм и нарушение аминокислотного состава потребляемого белка.

НЕДОСТАТОЧНОЕ ПОСТУПЛЕНИЕ БЕЛКА

Оптимальное количество белка, которое должно поступать в организм, колеблется в диапазоне 1,5-2,5 г на кг массы тела в сутки. Основная причина недостаточного поступления белка в организм – голодание. Выделяют несколько видов голодания.

•  Абсолютное (прекращение поступления в организм пищи и воды).

•  Полное (прекращение поступления в организм пищи, но не воды).

•  Неполное (недостаточное количество принимаемой пищи, в том числе белка).

•  Частичное (недостаток в пище отдельных её компонентов – белков, липидов, углеводов, химических элементов, витаминов).

Проявления белкового голодания

При белковом голодании могут развиваться такие заболевания, как квашиоркор и алиментарная дистрофия.

Квашиоркор – несбалансированная алиментарная белково-энергетическая недостаточность.

Вызывается рационом с недостаточным содержанием белка и незаменимых аминокислот, а также избытком калорийных небелковых продуктов (крахмала, сахара).

Алиментарная дистрофия (алиментарный маразм) – сбалансированная белково-калорическая недостаточность.

Полное или частичное белковое голодание приводит к мобилизации белка костей, мышц, кожи, в значительно меньшей мере – белка внутренних органов.

ИЗБЫТОЧНОЕ ПОСТУПЛЕНИЕ БЕЛКА

•  Причины:

♦ Переедание.

♦ Несбалансированная диета (длительный приём пищи с высоким содержанием белка).

♦ Активация протеосинтеза (например, при гиперпродукции СТГ).

•  Проявления:

♦ Положительный азотистый баланс.

♦ Повышенное содержание белка в крови.

♦ Диспептические расстройства (поносы, запоры).

♦ Дисбактериоз кишечника с аутоинтоксикацией.

♦ Отвращение к пище, особенно богатой белком.

НАРУШЕНИЯ АМИНОКИСЛОТНОГО СОСТАВА ПОТРЕБЛЯЕМОГО БЕЛКА

В состав белков входят 22 аминокислоты, в том числе 8 незаменимых (валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин). Незаменимые аминокислоты не могут быть синтезированы в необходимом объёме в организме человека и должны поступать с пищей.

Дефицит незаменимых аминокислот

•  Общие проявления характерны для недостатка любой незаменимой аминокислоты:

♦ Отрицательный азотистый баланс.

♦ Замедление роста и нарушения развития у детей.

♦ Снижение регенераторной активности тканей и органов.

♦ Уменьшение массы тела.

♦ Снижение аппетита и усвоения белка пищи.

•  Специфические проявления характерны для дефицита конкретной незаменимой аминокислоты.

Избыток отдельных аминокислот

•  Общие проявления. Избыточное поступление и образование аминокислот в организме приводит к нарушению вкуса, снижению аппетита, уменьшению массы тела, расстройствам обмена других аминокислот, нарушениям функций органов и тканей.

•  Специфические проявления характерны для избытка конкретной аминокислоты.

Расстройства переваривания белка в желудке и кишечнике

Расстройства пищеварения в желудке и в тонком кишечнике приводят к нарушению обмена белка.

Нарушения расщепления белка в желудке

•  Причины: гипоацидные состояния, снижение содержания или активности пепсина, резекция части желудка.

•  Последствия и проявления: недостаточное расщепление белков, замедление эвакуации пищи в двенадцатиперстную кишку.

Нарушения переваривания белка в тонком кишечнике

•  Причины: расстройство полостного и пристеночного расщепления белка в кишечнике, а также нарушение всасывания (синдромы мальабсорбции).

•  Проявления:

♦ Креаторея.

♦ Целиакия глютеновая – синдром, характеризующийся нарушением полостного и мембранного переваривания белков, а также торможением всасывания аминокислот.

♦ Диспептические расстройства.

Нарушения трансмембранного переноса аминокислот

Нарушения трансмембранного переноса аминокислот обусловлены мембранопатиями различного генеза, которые приводят к расстройствам транспорта аминокислот на нескольких этапах: из кишечника в кровь, из крови в гепатоциты, из первичной мочи в кровь, из крови в клетки органов и тканей.

Примеры: синдром Фанкони, цистинурия, цистиноз нефропатический, отравления солями тяжёлых металлов (например, меди, кадмия, свинца, ртути), эндотоксинемии (например, при избытке соединений меди).

Расстройства метаболизма аминокислот

Различают первичные (наследственные, врождённые) и вторичные (приобретённые, симптоматические) расстройства метаболизма аминокислот.

Примеры первичных расстройств: фенилкетонурия, тирозинопатии (альбинизм, тирозинемии, тирозинозы), алкаптонурия, ацидемия изовалериановая, лейциноз, гомоцистеинурия.

Нарушение содержания белков в плазме крови

Уровень протеинемии является результатом соотношения процессов протеосинтеза и протеолиза в различных тканях и органах. В норме содержание белков в плазме крови составляет около 7% её массы. Белок крови представлен альбуминами (около 56%) и глобулинами (примерно 44%).

Диспротеинемии – типовые формы нарушения содержания белков в плазме крови.

Выделяют гиперпротеинемии, гипопротеинемии и парапротеинемии.

Гиперпротеинемии

Различают две разновидности увеличения общего содержания белков в плазме крови:

•  Гиперсинтетическую (истинную, протеосинтетическую). Наблюдается гиперпродукция либо нормального белка (например, Ig), либо парапротеинов (например, при плазмоцитомах, миеломной болезни);

•  Гемоконцентрационную (ложную). Гипопротеинемия развивается в результате гемоконцентрации без усиления протеосинтеза (например, при ожоговой болезни, диарее, повторной рвоте, длительном усиленном потоотделении).

Гипопротеинемии

Известны два варианта уменьшения общей концентрации белков в плазме крови:

•  Гипосинтетический (истинный). Этот вариант гипопротеинемии может быть двух видов.

♦ Первичной (наследственной или врождённой; например, гипопротеинемия при болезни Брутона).

♦ Вторичной (приобретённой, симптоматической; например, при печёночной недостаточности, белковом голодании, почечной недостаточности, ожоговой болезни).

•  Гемодилюционный. Эта гипопротеинемия обусловлена гиперволемией (например, при гиперальдостеронизме или почечной недостаточности).

Парапротеинемии

Парапротеинемии наблюдают при:

♦ миеломной болезни: опухолевые плазмоциты продуцируют аномальные лёгкие или тяжёлые цепи молекул Ig;

♦ лимфомах (лимфоцитарных или плазмоцитарных). Лимфомы синтезируют аномальные IgM, обладающие повышенной агрегируемостью.

Расстройства финальных этапов катаболизма белка

Расстройства конечных стадий катаболизма белка характеризуются нарушением образования и дальнейших изменений мочевины, аммиака, креатинина, индикана, а также их выведения из организма.

Диспротеинозы

Диспротеинозы – патологические состояния, характеризующиеся изменением физико-химических свойств белков и расстройством их функций.

По преимущественной локализации патологического процесса различают клеточные и внеклеточные (амилоидоз, гиалиноз, мукоидное и фибриноидное набухание) диспротеинозы. Подробно о диспротеинозах смотрите в разделе «Дистрофии» главы 4.

НАРУШЕНИЯ ОБМЕНА НУКЛЕИНОВЫХ КИСЛОТ

Нарушения обмена нуклеиновых кислот характеризуются расстройствами синтеза и деструкции пиримидиновых и пуриновых оснований.

•  Пиримидиновые основания: урацил, тимин, цитозин, метил- и оксиметилцитозин.

•  Пуриновые основания: аденин, гуанин, метиладенин, метилгуанин. Они являются составной частью макроэргических соединений – аденинди- и трифосфата, гуанинди- и трифосфата. Финальный метаболит обмена пуринов – мочевая кислота.

Расстройства метаболизма пиримидиновых оснований

К расстройствам, сопровождающимся нарушением метаболизма пиримидиновых оснований, относятся оротацидурия, гемолитическая анемия и аминоизобутиратурия вследствие недостаточности 3-гидрок- сиизобутират дегидрогеназы.

Нарушения обмена пуриновых оснований

К основным проявлениям, вызванным нарушениями обмена пуриновых оснований, относят подагру, гиперурикемию, синдром ЛешаНайена и гипоурикемию.

ГИПЕРУРИКЕМИЯ

Гиперурикемия – состояние, проявляющееся повышенной концентрацией мочевой кислоты в крови и, как следствие – в моче.

ПОДАГРА

Подагра – заболевание, характеризующееся хронической гиперурикемией, отложением уратов в органах и тканях, уратной нефропатией и уролитиазом.

Этиология

•  Причины:

♦ Первичные. Представляют собой генетический дефект ферментов обмена мочевой кислоты.

♦ Вторичные. Наиболее часто это сахарный диабет, гиполипопротеинемии, артериальная гипертензия, ожирение.

•  Факторы риска:

♦ Повышенное поступление в организм пуриновых оснований (например, при употреблении большого количества мяса, молока, икры, рыбы, кофе, какао, шоколада).

♦ Увеличение катаболизма пуриновых нуклеотидов (например, при противоопухолевой терапии; массивном апоптозе у пациентов с аутоиммунными болезнями).

♦ Торможение выведения мочевой кислоты с мочой (например, при почечной недостаточности).

♦ Повышенный синтез мочевой кислоты при одновременном снижении выведения её из организма (например, при злоупотреблении алкоголем, шоковых состояниях, гликогенозе с недостаточностью глюкозо-6-фосфатазы).

Патогенез подагры

Наиболее важными звеньями патогенеза подагры являются:

♦ активация системы комплемента с образованием факторов хемотаксиса C5a и C3a под влиянием избытка уратов в плазме крови и межклеточной жидкости;

♦ накопление лейкоцитов в местах отложения кристаллов мочевой кислоты: в коже, почках, хрящах, в околосуставных тканях под влиянием хемотаксических веществ;

♦ фагоцитоз кристаллов мочевой кислоты, который сопровождается высвобождением БАВ, инициирующих асептическое воспаление;

♦ повреждение клеток и неклеточных элементов медиаторами воспаления и непосредственно уратами, сопровождающееся образованием антигенных структур, что активирует реакции иммунной аутоагрессии;

♦ развитие (в зоне отложения уратов) хронического пролиферативного воспаления, образования подагрических гранулём и подагрических «шишек» – tophi urici, обычно вокруг составов.

Проявления подагры

•  Постоянно повышенная концентрация мочевой кислоты в плазме крови и в моче.

•  Воспаление суставов по типу моноартритов, что сопровождается сильной болью и лихорадкой.

•  Уролитиаз и рецидивирующие пиелонефриты, завершающиеся нефросклерозом и почечной недостаточностью.

ГИПОУРИКЕМИЯ

Гипоурикемия – состояние, характеризующееся снижением концентрации мочевой кислоты в крови ниже нормы.

•  Возможная причина: недостаточность ксантиноксидазы или сульфитоксидазы.

•  Проявления

♦ Образование кристаллов ксантина в ткани почек, вокруг суставов и в мышцах.

♦ Мышечные судороги и нистагм (обусловлены миозитами, поражением центральных и периферических нейронов).

ГЛАВА 10. НАРУШЕНИЯ ЛИПИДНОГО ОБМЕНА

Липиды – неоднородные по химическому составу органические вещества, нерастворимые в воде, но растворимые в неполярных растворителях.

Типовыми формами патологии липидного обмена являются ожирение, истощение, липодистрофии, липидозы и дислипопротеинемии.

Ожирение

Ожирение – избыточное накопление липидов в организме в виде триглицеридов.

ВИДЫ ОЖИРЕНИЯ

В зависимости от степени увеличения массы тела выделяют три степени ожирения.

• Для оценки оптимальной массы тела используют различные формулы.

♦ Наиболее простая – индекс Брока: из показателя роста (в см) вычитают 100.

♦ Индекс массы тела (ИМТ) вычисляют также по следующей формуле:

•  В зависимости от значения индекса массы тела говорят о нормальной или избыточной массе тела 3 степеней (табл. 10-1).

Таблица 10-1. Степени ожирения

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A009,pic_0015.png,-1,,00000000,)

•  По преимущественной локализации жировой ткани различают ожирение общее (равномерное) и местное (локальная липогипертрофия). Различают две разновидности местного ожирения.

♦ Женский тип (гиноидный) – избыток подкожного жира преимущественно в области бёдер и ягодиц.

♦ Мужской тип (андроидный или абдоминальный) – накопление жира преимущественно в области живота.

•  По генезу выделяют первичное ожирение и вторичные его формы.

♦ Первичное (гипоталамическое) ожирение – самостоятельное заболевание нейроэндокринного генеза, обусловленное расстройством системы регуляции жирового обмена.

♦ Вторичное (симптоматическое) ожирение – следствие различных нарушений в организме, обусловливающих снижение липолиза и активацию липогенеза (например, при СД, гипотиреозе, гиперкортицизме).

ЭТИОЛОГИЯ

•  Причина первичного ожирения – нарушение функционирования системы «гипоталамус-адипоциты».

•  Вторичное ожирение развивается при избыточной калорийности пищи и пониженном уровне энергозатрат организма (в основном при гиподинамии).

ПАТОГЕНЕЗ ОЖИРЕНИЯ

Выделяют нейрогенные, эндокринные и метаболические механизмы ожирения.

Нейрогенные варианты ожирения

•  Центрогенный (корковый, психогенный) механизм – один из вариантов расстройства пищевого поведения (два других: неврогенная анорексия и булимия).

♦ Причина: различные расстройства психики, проявляющиеся постоянным, иногда непреодолимым стремлением к приёму пищи.

♦ Возможные механизмы:

❖ активация серотонинергической, опиоидергической и других систем, участвующих в формировании ощущений удовольствия и комфорта;

❖ восприятие пищи как сильного положительного стимула (допинга), что ещё более активирует указанные системы. Это замыкает порочный круг центрогенного механизма развития ожирения.

•  Гипоталамический (диэнцефальный, подкорковый) механизм.

♦ Причина: повреждение нейронов гипоталамуса (например, после сотрясения мозга, при энцефалитах, краниофарингиоме, метастазах опухолей в гипоталамус).

♦ Наиболее важные звенья патогенеза:

❖ Повреждение или раздражение нейронов заднелатерального вентрального ядра гипоталамуса стимулирует синтез и секрецию нейропептида Y и снижает чувствительность к лептину, ингибирующему синтез нейропептида Y. Нейропептид Y стимулирует чувство голода и повышает аппетит.

❖ Нарушение формирования чувства голода вследствие избыточной выработки нейромедиаторов, формирующих чувство голода и повышающих аппетит (ГАМК, дофамина, β-эндорфина, энкефалинов). Это приводит к снижению синтеза нейромедиаторов, формирующих чувство сытости и угнетающих пищевое поведение (серотонина, норадреналина, холецистокинина, соматостатина).

Эндокринные варианты ожирения

Эндокринные механизмы ожирения – лептиновый, гипотиреоидный, надпочечниковый и инсулиновый.

•  Лептиновый механизм – ведущий в развитии первичного ожирения.

♦ Лептин образуется в жировых клетках. Он уменьшает аппетит и повышает расход энергии организмом. Лептин подавляет образование и выделение гипоталамусом нейропептида Y.

♦ Нейропептид Y участвует в формировании чувства голода. Он повышает аппетит и снижает энергорасходы организма.

♦ Липостат. Контур «лептин-нейропептид Y» обеспечивает поддержание массы жировой ткани тела при участии инсулина, катехоламинов, серотонина, холецистокинина, эндорфинов. В целом, эта система БАВ, обеспечивающих динамический гомеостаз энергетического обмена и массы жировой ткани в организме, получила название системы липостата.

•  Гипотиреоидный механизм ожирения включается при недостаточности эффектов йодсодержащих гормонов щитовидной железы, что снижает интенсивность липолиза, скорость обменных процессов в тканях и энергетические затраты организма.

•  Надпочечниковый (глюкокортикоидный, кортизоловый) механизм ожирения включается вследствие гиперпродукции глюкокортикоидов в коре надпочечников (например, при болезни и синдроме Иценко-Кушинга), что способствует липогенезу за счёт гипергликемии и включения инсулинового механизма.

•  Инсулиновый механизм развития ожирения развивается вследствие прямой активации инсулином липогенеза в жировой ткани.

Метаболические механизмы ожирения. Запасы углеводов в организме относительно малы. В связи с этим выработался механизм экономии углеводов: при повышении в рационе доли жиров скорость окисления углеводов снижается. При расстройстве системы регуляции активируется механизм, обеспечивающий повышение аппетита и увеличение приёма пищи. В этих условиях жиры не подвергаются расщеплению и накапливаются в виде триглицеридов.

Истощение

Истощение – патологическое снижение массы жировой, а также мышечной и соединительной ткани ниже нормы. Крайней степенью истощения является кахексия.

При истощении дефицит жировой ткани составляет более 20-25%, а при кахексии – более 50%. ИМТ при истощении менее 19,5 кг/м2.

ЭТИОЛОГИЯ

Истощение может быть вызвано эндогенными и экзогенными причинами.

•  Экзогенные причины:

♦ Вынужденное или осознанное полное либо частичное голодание.

♦ Недостаточная калорийность пищи.

•  Эндогенные причины истощения подразделяют на первичные и вторичные.

♦ Причина первичного истощения: подавление синтеза нейропептида Y в гипоталамусе (при травме или ишемии гипоталамуса, сильном затяжном стрессе) и гипосенситизация клеток-мишеней к нейропептиду Y.

♦ Причины вторичного (симптоматического) истощения: мальабсорбция, дефицит глюкокортикоидов, гипоинсулинизм, повышенный синтез глюкагона и соматостатина, гиперпродукция клетками опухолей ФНОα.

ПАТОГЕНЕЗ

Экзогенное истощение и кахексия. Отсутствие или значительный дефицит продуктов питания приводят к истощению запаса жиров, нарушению всех видов обмена веществ, недостаточности биологического окисления и подавлению пластических процессов.

Первичные эндогенные формы истощения

Наибольшее клиническое значение имеют гипоталамическая, кахектиновая и анорексическая формы.

•  При гипоталамической (диэнцефальной, подкорковой) форме истощения и кахексии происходит снижение или прекращение синтеза и выделения в кровь нейронами гипоталамуса пептида Y, что нарушает липостат.

•  При кахектиновой (или цитокиновой) форме истощения синтез адипоцитами и макрофагами ФНОа (кахектина) приводит к подавлению синтеза нейропептида Y в гипоталамусе, угнетению липогенеза и активации катаболизма липидов.

•  Анорексическая форма.

♦ У лиц, имеющих предрасположенность к анорексии, критическое отношение к массе своего тела (воспринимаемой как избыточную) приводит к развитию нервно-психических расстройств и длительным периодам отказа от приёма пищи. Наиболее часто наблюдается у девочек-подростков и девушек до 18-летнего возраста.

♦ Дальнейшее течение процесса связано с уменьшением синтеза нейропептида Y и значительным снижением массы тела, вплоть до кахексии.

Вторичные эндогенные формы истощения и кахексии являются симптомами других форм патологии: синдромов мальабсорбции, роста новообразований (синтезирующих ФНОа), гипоинсулинизма, гипокортицизма, недостатка эффектов гормонов вилочковой железы.

Липодистрофии и липидозы

Липодистрофии – состояния, характеризующиеся генерализованной или локальной утратой жировой ткани, реже – избыточным её накоплением в подкожной клетчатке.

Липидозы – состояния, характеризующиеся расстройствами метаболизма липидов в клетках (паренхиматозные липидозы), жировой клетчатке (ожирение, истощение) или стенках артериальных сосудов (например, при атеросклерозе).

Дислипопротеинемии

Дислипопротеинемии – состояния, характеризующиеся отклонением от нормы содержания, структуры и соотношения в крови различных ЛП.

Характер течения и клинические проявления дислипопротеинемий определяются:

♦ генетическими особенностями организма (например, составом, соотношением и уровнем различных ЛП);

♦ факторами внешней среды (например, набором продуктов питания, особенностями рациона и режима приёма пищи);

♦ наличием сопутствующих заболеваний (например, ожирения, гипотиреоза, СД, поражений почек и печени).

Атерогенность липопротеинов

ЛП подразделяют на атерогенные (ЛПОНП, ЛПНП и ЛППП) и антиатерогенные (ЛПВП).

Оценку потенциальной атерогенности ЛП крови проводят путём расчёта холестеринового коэффициента атерогенности:

холестерин общий – холестерин ЛПВП

холестерин ЛПВП

В норме холестериновый коэффициент атерогенности не превышает 3,0. При увеличении этого значения риск развития атеросклероза нарастает.

ВИДЫ ДИСЛИПОПРОТЕИНЕМИЙ

•  По происхождению: первичные (наследственные; они могут быть моногенными и полигенными) и вторичные.

•  По изменению содержания липопротеинов в крови: гиперлипопротеинемии, гипо- и алипопротеинемии, комбинированные дислипопротеинемии.

К развитию вторичных дислипопротеинемий могут приводить различные, как правило, хронические заболевания (табл. 10-2).

Таблица 10-2. Заболевания, приводящие к развитию вторичных дислипопротеинемий

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A009,pic_0016.png,-1,,00000000,)

Гиперлипопротеинемии

Гиперлипопротеинемии – состояния, проявляющиеся стойким повышением содержания ЛП в плазме крови.

В 1967 г. Фредриксон и соавт. разработали классификацию гиперлипопротеинемий. Позднее эта классификация была пересмотрена специалистами ВОЗ (табл. 10-3).

Таблица 10-3. Типы гиперлипопротеинемий и содержание различных липопротеинов при них

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A009,pic_0017.png,-1,,00000000,)

Гиполипопротеинемии

Гиполипопротеинемии – состояния, проявляющиеся стойким снижением уровня ЛП в плазме крови вплоть до полного их отсутствия (алипопротеинемия).

Комбинированные дислипопротеинемии характеризуются нарушением соотношения различных фракций ЛП.

Атеросклероз

Атеросклероз – хронический патологический процесс, приводящий к изменениям преимущественно во внутренней оболочке артерий эластического и мышечно-эластического типов вследствие накопления избытка липидов, образования фиброзной ткани, а также комплекса других изменений в них.

При атеросклерозе наиболее часто поражаются такие артерии, как коронарные, сонные, почечные, брыжеечные, нижних конечностей, а также брюшной отдел аорты.

ЭТИОЛОГИЯ

• Причины атеросклероза окончательно не выяснены. Существует три гипотезы, объясняющие возникновение атеросклероза: липидная, хронического повреждения эндотелия и моноклональная.

•  Факторы риска. Известно не менее 250 факторов, способствующих возникновению и развитию атеросклероза. К наиболее значимым факторам риска относят курение, сахарный диабет, артериальную гипертензию, ожирение, аутоиммунные заболевания, гиперхолестеринемию, гипертриглицеридемию, гипергомоцистеинемию, гиподинамию, наследственную предрасположенность, приём пероральных контрацептивов.

ПАТОГЕНЕЗ

Выделяют следующие стадии атеросклеротического поражения сосудов: липидных пятен и полосок, образования атеромы и фиброатеромы, развития осложнений (рис. 10-1).

Липидные пятна и полоски

Неповреждённый эндотелий препятствует проникновению ЛП в интиму артерий. Под воздействием факторов риска эндотелиальные клетки повреждаются, и развивается эндотелиальная дисфункция – пусковой фактор атерогенеза.

Образование липидных пятен и полосок протекает в несколько этапов:

♦ Миграции в участки интимы артерий с повреждёнными эндотелиальными клетками большого числа моноцитов и Т-лимфоцитов.

♦ Синтеза лейкоцитами БАВ (факторов хемотаксиса, кининов, Пг, ФНОа) и активных форм кислорода, что сопровождается интенсификацией СПОЛ. Указанные факторы потенцируют повреждение эндотелия и проникновение ЛП в интиму сосудов.

♦ Дополнительной активации перекисного окисления проникающих в субэндотелиальный слой ЛПНП с образованием модифицированных ЛП.

♦ Захвата модифицированных ЛП моноцитами при помощи «скевенджер-рецепторов» (рецепторов-чистильщиков) и превращение их в пенистые клетки – макрофаги, насыщенные липидами.

♦ Активации в очаге повреждения стенки артерии Т-лимфоцитов и макрофагов с развитием асептического воспаления.

♦ Пролиферации ГМК и фибробластов и синтеза ими компонентов соединительной ткани с образованием в интиме липидных пятен и полосок.

Формирование атеромы и фиброатеромы

Формирование атеросклеротической бляшки обусловлено несколькими факторами:

•  Дальнейшим повреждением эндотелия медиаторами воспаления, что потенцирует проникновение в интиму сосудов ЛПНП и замыканию порочного круга.

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A009,pic_0018.jpg,-1,,00000000,)

Рис. 10-1. Последовательные изменения в повреждённой артериальной стенке при атеросклерозе. 1 – нормальная стенка артерии; 2 – адгезия моноцитов и тромбоцитов к повреждённому эндотелию; 3 – миграция моноцитов и ГМК в интиму, липидная инфильтрация; 4 – пролиферация клеточных элементов, формирование липидного ядра и образование фиброатеромы. [по 4].

•  Трансформацией ГМК в макрофагоподобные и активацией синтеза ими и фибробластами компонентов межклеточного вещества соединительной ткани (протеогликанов, гликозаминогликанов, коллагеновых и эластических волокон).

•  Формированием липидного ядра атеромы в связи с гибелью пенистых клеток и выходом из них свободных липидов.

♦ Атерома характеризуется наличием значительного количества клеточных элементов: пенистых клеток, ГМК на разных этапах пролиферации и трансформации, лимфоцитов, гранулоцитов, тромбоцитов; формированием липидного ядра с большим количеством свободного холестерина и его эфиров.

♦ Фиброатерома характеризуется формированием фиброзной крышки над липидным ядром за счёт синтеза компонентов соединительной ткани и развитием сети новообразованных сосудов, проникающих в бляшку.

Развитие осложнений атеросклероза

Модификация атеросклеротических бляшек приводит к развитию следующих процессов:

♦ кальцификаций, атерокальцинозу – накоплению в ткани бляшек соединений кальция;

♦ трещинам крышки фиброатеромы или её изъязвлениям, что сопровождается развитием пристеночного тромба с угрозой обтурации артерии или её эмболии;

♦ разрывам стенок новообразованных микрососудов, приводящим к кровоизлияниям в стенку артерии, образованию пристеночных и интрамуральных тромбов.

Клинически осложнения атеросклероза наиболее часто проявляются ишемией и инфарктами органов и тканей, снабжаемых кровью из по- ражённой артерии.

ПРИНЦИПЫ ПРОФИЛАКТИКИ И ТЕРАПИИ АТЕРОСКЛЕРОЗА

•  Этиотропный. Имеет целью исключение или ослабление действия факторов риска. Примеры мероприятий: применение гиполипидемических ЛС, коррекция АД, отказ от курения, соблюдение опре- делённой диеты.

•  Патогенетический. Направлен на разрыв «цепочки атерогенеза». Примеры воздействий: использование антиагрегантов и антикоагулянтов; применение специфических ЛС, уменьшающих воспаление в атероме (например, статинов или моноклональных антител к ФНОа и другим провоспалительным цитокинам).

•  Симптоматический. Направлен на устранение или уменьшение выраженности симптомов атеросклероза, таких как эпизоды головной боли, стенокардии, болей в конечностях и др.

ГЛАВА 11. НАРУШЕНИЯ ВОДНОГО ОБМЕНА

Общее содержание воды в организме взрослого человека составляет 55%, а у эмбриона – до 95% от массы тела.

Содержание воды в организме определяется, в основном, его возрастом, массой и полом. Вода в организме находится в разных секторах, или компартментах.

♦ Внутриклеточный компартмент (около 55% всей воды организма): связанная, свободная и адгезированная вода.

♦ Внеклеточный компартмент (примерно 45% всей воды организма): плазменная, трансцеллюлярная, межклеточная и кристаллизационная вода.

ВОДНЫЙ БАЛАНС

Водный баланс (табл. 11-1) зависит от трёх процессов: поступления воды в организм с пищей и питьём, образования воды при обмене веществ (так называемая эндогенная вода), выделения воды из организма.

Таблица 11-1. Суточный баланс воды в организме взрослого человека

Поступление (мл) Выделение (мл)
С твёрдой пищей (1000) С жидкой пищей (1200) Образующаяся в организме (300)

Всего: 2500

С мочой (1400) С потом (600)

С выдыхаемым воздухом (300) С фекальными массами (200)

Всего: 2500

Различают положительный (поступление воды превышает её выведение), отрицательный (выведение воды преобладает над её поступлением) и нейтральный (количество поступающей и выводимой воды совпадает) водный баланс.

ТИПОВЫЕ ФОРМЫ НАРУШЕНИЯ ВОДНОГО ОБМЕНА

Дисгидрии – нарушения водного обмена.

Дисгидрии классифицируют с учетом трёх критериев:

•  Содержания жидкости в организме: выделяют гипогидратацию (обезвоживание) и гипергидратацию (гипергидрия), в том числе отёк.

•  Осмоляльности внеклеточной жидкости: различают гипоосмолярную (осмоляльность плазмы менее 280 мОсм/кг), гиперосмолярную (осмоляльность плазмы крови более 300 мОсм/кг) и изоосмолярную формы дисгидрии.

•  Сектора организма, в котором преимущественно нарушается водный обмен: выделяют клеточную, внеклеточную и смешанную (ассоциированную) формы дисгидрии.

Гипогидратация

Гипогидратация характеризуется отрицательным водным балансом. Виды гипогидратации

В зависимости от осмоляльности внеклеточной жидкости выделяют гипоосмолярную, гиперосмолярную и изоосмолярную разновидности гипогидратации.

•  Гипоосмолярная гипогидратация обусловлена преобладанием выведения солей над потерями воды.

•  Гиперосмолярная гипогидратация развивается в результате превышения выведения жидкости над потерями солей.

•  Изоосмолярная гипогидратация является следствием эквивалентного уменьшения в организме воды и солей.

Этиология гипогидратации

•  Причины гипоосмолярной гипогидратации:

♦ Гипоальдостеронизм (например, при болезни Аддисона).

♦ Продолжительное интенсивное потоотделение.

♦ Неукротимая рвота, профузные поносы и наличие свищей желудка или кишечника (ведут к потерям желудочного и кишечного сока).

♦ Неправильное проведение диализа с использованием гипоосмолярных диализирующих растворов.

•  Причины гиперосмолярной гипогидратации:

♦ Недостаточное питьё воды (например, при «сухом» голодании с отказом от потребления жидкости, при недостатке питьевой воды).

♦ Нервно-психические заболевания, сопровождающиеся угнетением чувства жажды (например, при повреждении нейронов центра жажды в результате кровоизлияния, ишемии, опухолевого роста, при сотрясении головного мозга).

♦ Гипертермические состояния (включая лихорадку). Увеличение температуры тела на 1 °C приводит к дополнительному выделению 400-500 мл жидкости в сутки с потом.

♦ Длительная ИВЛ недостаточно увлажнённой газовой смесью.

♦ Питьё морской воды в условиях обезвоживания.

♦ Парентеральное введение гиперосмолярных растворов при гипогидратации.

• Причины изоосмолярной гипогидратации:

♦ Острая массивная кровопотеря на её начальной стадии (т.е. до развития эффектов экстренных механизмов компенсации).

♦ Полиурия (например, при несахарном диабете и СД).

♦ Ожоги большой площади.

♦ Полиурия, вызванная повышенными дозами мочегонных препаратов.

Патогенез и проявления гипогидратации

Различные варианты гипогидратации имеют сходные проявления, хотя могут отличаться специфичными симптомами. Преобладание отдельных симптомов и их выраженность зависит от степени и вида гипогидратации. Ниже перечислены наиболее характерные общие признаки гипогидратации.

♦ Уменьшение ОЦК (гиповолемия).

♦ Увеличение вязкости крови (в связи с гемоконцентрацией).

♦ Системные расстройства кровообращения (центрального, органно-тканевого, микроциркуляторного).

♦ Расстройства КЩР (чаще ацидоз).

♦ Гипоксия, вызываемая нарушением кровообращения (циркуляторная), уменьшением объёма крови (гемическая), расстройством перфузии лёгких (респираторная), обмена веществ в тканях (тканевая).

♦ Сухость слизистых оболочек и кожи, снижение секреции слюны (гипосаливация), уменьшение эластичности и напряжения (тургора) кожи и мышц, западение и мягкость глазных яблок, снижение объёма суточной мочи.

Принципы устранения гипогидратации

Терапия различных видов гипогидратации базируется на этиотропном, патогенетическом и симптоматическом принципах.

•  Этиотропное лечение предусматривает устранение причинного фактора.

•  Патогенетическое лечение проводится с учётом вида гипогидратации и включает:

♦ Устранение дефицита воды в организме, что достигается введением недостающего объёма жидкости.

♦ Коррекцию ионного дисбаланса.

♦ Ликвидацию сдвигов КЩР (см. главу 13 «Нарушения кислотнощелочного равновесия»).

♦ Нормализацию гемодинамики.

♦ Устранение гипоксии.

•  Симптоматическое лечение направлено на устранение симптомов, усугубляющих состояние больного. С этой целью применяют обезболивающие, седативные и кардиотонические ЛС.

Гипергидратация

Гипергидратация развивается при положительном водном балансе.

Виды гипергидратации

В зависимости от осмоляльности внеклеточной жидкости различают гипоосмолярную, гиперосмолярную и изоосмолярную гипергидратацию.

•  Гипоосмолярная гипергидратация характеризуется увеличением объёма вне- и внутриклеточной жидкости со сниженной осмоляльностью.

•  Гиперосмолярная гипергидратация развивается при увеличении объёма внеклеточной жидкости с повышенной осмоляльностью.

•  Изоосмолярная гипергидратация характеризуется увеличением объ- ёма внеклеточной жидкости с нормальной осмоляльностью.

Этиология гипергидратации

•  Причины гипоосмолярной гипергидратации:

♦ Избыточное введение в организм жидкостей с пониженным содержанием в них солей или их отсутствием (например, «водное отравление» при обильном питье пресной воды).

♦ Повышенное содержание в крови АДГ в связи с его гиперпродукцией в гипоталамусе (например, при синдроме Пархона).

♦ Почечная недостаточность с развитием олиго- и анурии.

•  Причины гиперосмолярной гипергидратации:

♦ Питьё морской воды.

♦ Введение в организм гиперосмолярных растворов без контроля осмоляльности плазмы крови.

♦ Гиперальдостеронизм, приводящий к избыточной реабсорбции в почках Na+.

♦ Заболевания почек, сопровождающиеся снижением экскреции солей (например, тубуло- и ферментопатии).

• Причины изоосмолярной гипергидратации:

♦ Вливание больших количеств изотонических растворов (например, хлорида натрия, глюкозы).

♦ Недостаточность кровообращения, приводящая к увеличению объёма внеклеточной жидкости.

♦ Повышение проницаемости стенок сосудов микроциркуляторного русла, что облегчает фильтрацию жидкости в капиллярах (например, при интоксикациях, некоторых инфекциях, токсикозе беременных).

♦ Гипопротеинемия, при которой жидкость задерживается в межклеточном пространстве (например, при общем или белковом голодании, печёночной недостаточности, нефротическом синдроме).

♦ Хронический лимфостаз, сопровождающийся торможением оттока межклеточной жидкости в лимфатические сосуды.

Патогенез и проявления гипергидратации

Различные виды гипергидратации имеют сходные и специфичные проявления. Наличие отдельных симптомов и их выраженность зависит от степени и вида гипергидратации. Ниже перечислены наиболее характерные признаки гипергидратации:

♦ Увеличение ОЦК (гиперволемия) и гемодилюция.

♦ Повышение сердечного выброса и АД.

♦ Полиурия (в связи с увеличением фильтрационного давления в почечных тельцах).

♦ Рвота и диарея (вследствие появления в плазме крови внутриклеточных компонентов, например, ферментов и других макромолекул в связи с повреждением и разрушением клеток различных тканей и органов).

♦ Психоневрологические расстройства: вялость, апатия, нарушения сознания, нередко судороги.

♦ При декомпенсации сердечной деятельности и развитии сердечной недостаточности – развитие отёков различной локализации.

♦ Гемолиз эритроцитов (при гипоосмолярной гипергидратации).

Принципы устранения гипергидратации

Лечение разных вариантов гипергидратации основывается на этиотропном, патогенетическом и симптоматическом принципах.

Этиотропный. Заключается в устранении или уменьшении действия причинного фактора (например, избыточного введения жидкости в организм, почечной недостаточности, эндокринных расстройств, недостаточности кровообращения).

Патогенетический. Предусматривает разрыв основных звеньев патогенеза гипергидратации. С этой целью:

♦ Устраняют избыток жидкости в организме (для этого чаще всего применяют диуретики).

♦ Ликвидируют дисбаланс ионов.

♦ Нормализуют кровообращение путём оптимизации работы сердца, тонуса сосудов, объёма и реологических свойств крови. Для этого используют кардиотропные и вазоактивные ЛС, плазму крови и плазмозаменители.

Симптоматический. Направлен на ликвидацию изменений в организме, усугубляющих течение гипергидратации (например, отёка лёгких, мозга, сердечных аритмий, приступов стенокардии, гипертензии).

ОТЁК

Отёк – типовая форма нарушения водного обмена, характеризующаяся накоплением избытка жидкости вне сосудов: в межклеточном пространстве и/или полостях тела.

ВИДЫ ОТЁКОВ

Отёки дифференцируют в зависимости от их генеза, локализации, распространённости, скорости развития и по основному патогенетическому фактору развития отёка.

В зависимости от происхождения выделяют воспалительный и невоспалительный отёки.

•  Воспалительный отёк образуется в результате экссудации под влиянием медиаторов воспаления (см. главу 5 «Воспаление»).

•  Невоспалительный отёк связан с образованием транссудата.

Транссудат – бедная белком (менее 2%) и клеточными элементами отёчная жидкость.

В зависимости от локализации отёка различают анасарку и водянки.

•  Анасарка – отёк подкожной клетчатки.

•  Водянка – скопление транссудата в полости тела.

♦ Асцит – скопление транссудата в брюшной полости.

♦ Гидроторакс – накопление транссудата в плевральной полости.

♦ Гидроперикард – образование транссудата в полости околосердечной сумки.

♦ Гидроцеле – накопление транссудата между листками серозной оболочки яичка.

♦ Гидроцефалия – избыток жидкости в желудочках мозга (внутренняя водянка мозга) или в субарахноидальном пространстве (внешняя водянка мозга).

В зависимости от распространённости различают местный и общий отёки. В зависимости от скорости развития отёка говорят о молниеносном или остром развитии, либо о хроническом течении отёка.

•  Молниеносный отёк развивается в течение нескольких секунд после воздействия (например, после укуса насекомых или змей).

•  Острый отёк развивается обычно в пределах часа после действия причинного фактора (например, отёк лёгких при острой сердечной недостаточности).

•  Хронический отёк формируется в течение нескольких суток или недель (например, нефротический, отёк при голодании).

В зависимости от основного патогенетического фактора различают гидродинамический, лимфогенный, онкотический, осмотический и мембраногенный отёки.

Патогенетические факторы развития отёка ГИДРОДИНАМИЧЕСКИЙ ФАКТОР

Гидродинамический (гемодинамический, гидростатический) фактор характеризуется увеличением эффективного гидростатического давления в сосудах микроциркуляторного русла. Причиныгемодинамического отёка.

•  Повышение венозного давления.

♦ Системное венозное давление повышается при недостаточности сердца в связи со снижением его насосной функции.

♦ Местное венозное давление повышается при обтурации вен (например, тромбом или эмболом) или при их сдавлении (например, опухолью, рубцом, отёчной тканью).

•  Увеличение ОЦК (например, вследствие гипоксии и увеличения выработки АДГ при хронической сердечной недостаточности).

Механизмы реализации гидродинамического фактора.

•  Торможение резорбции интерстициальной жидкости в посткапиллярах и венулах в результате повышения эффективного гидростатического давления – разницы между гидростатическим давлением межклеточной жидкости (в среднем 7 мм. рт.ст.) и гидростатическим давлением крови в сосудах микроциркуляторного русла. В норме эффективное гидростатическое давление составляет в артериальной части микрососудов 36-38 мм рт.ст., а в венозной – 14-16 мм рт.ст.

Этот механизм играет главную роль при повышении венозного давления.

•  Увеличение фильтрации крови в капиллярах вследствие повышения эффективного гидростатического давления. Как правило, этот механизм активируется при значительном возрастании ОЦК.

ЛИМФОГЕННЫЙ ФАКТОР

Лимфогенный (лимфатический) фактор характеризуется затруднением оттока лимфы от тканей вследствие либо механического препятствия, либо избыточного образования лимфы. Причинывключения лимфогенного фактора.

♦ Врождённая гипоплазия лимфатических сосудов и узлов.

♦ Сдавление лимфатических сосудов (например, опухолью, рубцом, увеличенным соседним органом).

♦ Эмболия лимфатических сосудов (например, клетками опухоли, паразитами).

♦ Опухоль лимфоузла, а также метастазы в лимфоузел опухолей других органов.

♦ Повышение центрального венозного давления (например, при сердечной недостаточности или увеличении внутригрудного давления).

♦ Спазм стенок лимфатических сосудов (например, при выбросе избытка катехоламинов при феохромоцитоме, при стрессе).

♦ Значительная гипопротеинемия (содержание белков в плазме крови менее 35-40 г/л) и включение онкотического фактора формирования отёка. Вследствие возрастания тока жидкости из сосудов в интерстициальное пространство значительно повышается образование лимфы в тканях.

Механизмы развития лимфогенного отёка различны при динамической и механической лимфатической недостаточности.

•  Динамическая лимфатическая недостаточность является результатом значительного возрастания лимфообразования. При этом лимфатические сосуды не способны транспортировать в общий кровоток существенно увеличенный объём лимфы. Наблюдается, например, при нефротическом синдроме, печёночной недостаточности.

•  Механическая лимфатическая недостаточность является следствием механического препятствия оттоку лимфы по сосудам в результате их сдавления или обтурации, а также при увеличении центрального венозного давления. Формирование отёка конечностей по такому механизму обозначают как слоновость.

Гидродинамический и лимфогенный факторы развития отёка нередко объединяют единым термином – «механический» (поскольку причиной развития большинства их вариантов является механическое препятствие току крови или лимфы).

ОНКОТИЧЕСКИЙ ФАКТОР

Онкотический (гипоальбуминемический, гипопротеинемический) фактор развития отёка включается при снижении онкотического давления крови и увеличении его в межклеточной жидкости. Причины развития онкотического отёка.

♦ Снижение онкотического давления крови в результате гипопротеинемии (в основном за счёт гипоальбуминемии; альбумины примерно в 2,5 раза более гидрофильны, чем глобулины). Наиболее часто содержание альбуминов уменьшается при недостаточном поступлении или избыточной потере белков, снижении синтеза альбуминов в печени.

♦ Повышение онкотического давления интерстициальной жидкости при деструкции клеток и гидролизе протеинов межклеточной жидкости.

Механизм реализации онкотического фактора заключается в увеличении фильтрации жидкой части крови в капиллярах и уменьшении реабсорбции воды в посткапиллярах и венулах (как следствие гипопротеинемии и гиперонкии ткани).

ОСМОТИЧЕСКИЙ ФАКТОР

Осмотический фактор развития отёка запускается при повышении осмоляльности интерстициальной жидкости и снижении осмоляльности плазмы крови.

Причины развития осмотического отёка.

•  Факторы, снижающие осмотическое давление крови и вызывающие развитие гипоосмолярной гипергидратации (см. выше).

•  Факторы, повышающие осмоляльность интерстициальной жидкости:

♦ выход из повреждённых и разрушенных клеток осмотически активных веществ (ионов Na+, K+, Ca2+, глюкозы, МК, азотистых соединений);

♦ повышение диссоциации в интерстициальной жидкости солей и органических соединений (например, в условиях гипоксии или ацидоза);

♦ снижение транспорта осмотически активных веществ (ионов, органических и неорганических соединений) от тканей в результате замедления оттока крови по венулам;

♦ транспорт Na+ из плазмы крови в интерстициальную жидкость (например, при гиперальдостеронизме).

Механизм образования осмотического отёка заключается в избыточном транспорте воды из крови в межклеточную жидкость по градиенту осмотического давления. Данный механизм имеет место при сердечном, почечном (нефритическом), печёночном и ряде других отёков.

МЕМБРАНОГЕННЫЙ ФАКТОР

Мембраногенный фактор характеризуется существенным повышением проницаемости стенок сосудов микроциркуляторного русла для воды, мелко- и крупномолекулярных веществ.

Причины повышения проницаемости сосудистых стенок: ацидоз, активация гидролитических ферментов, перерастяжение стенок сосуда, изменение формы клеток эндотелия. Механизмы реализации мембраногенного фактора:

♦ облегчение фильтрации воды из крови в интерстициальное пространство. Этот механизм может быть сбалансирован повышением реабсорбции воды в посткапиллярах в связи с истончением их стенок;

♦ увеличение выхода молекул белка из плазмы крови в межклеточную жидкость ведёт к включению онкотического фактора. Такой механизм лежит в основе развития отёка при воспалении, местных аллергических реакциях, укусах насекомых и змей.

МНОГОФАКТОРНОСТЬ

В клинической практике, как правило, не встречаются монопатогенетические отёки (развивающиеся на основе только одного из описанных выше патогенетических факторов). В каждом конкретном случае в патогенезе отёка выделяют: 1) инициальный (стартовый, первичный) патогенетический фактор и 2) вторичные патогенетические факторы, включающиеся по ходу развития отёка, особенно при его хроническом течении.

Клинические варианты отёков ОТЁКИ ПРИ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ

Причина: сердечная недостаточность (состояние, при котором сердце не может адекватно обеспечить потребности органов и тканей в кровоснабжении).

Патогенез

Инициальный патогенетический фактор – гидродинамический.

• Последовательность включения и значимость других, указанных ниже, патогенетических факторов отёка могут быть различными в зависимости от динамики расстройств кровообращения и их последствий. К числу основных относятся: Уменьшение кровотока в сосудах почек.

♦ Причина: снижение величины минутного объёма кровотока.

♦ Механизм реализации: активация системы «ренин-ангиотензинальдостерон», вследствие чего усиливается реабсорбция Na+ в канальцах почек.

•  Увеличение синтеза АДГ (гидродинамический фактор патогенеза отёка).

♦ Причина: увеличение реабсорбции Na+ в почках.

♦ Механизм реализации: гиперосмия крови (за счёт увеличения концентрации Na+) приводит к активации осморецепторов, усилению синтеза и высвобождения в кровь АДГ. Под влиянием этого гормона в почках увеличивается реабсорбция воды, что приводит к гиперволемии и включению гидродинамического фактора.

•  Развитие механической лимфатической недостаточности (лимфогенный фактор).

♦ Причина: увеличение центрального венозного давления вследствие ослабления насосной функции сердца.

♦ Механизм реализации: торможение оттока лимфы из лимфатических протоков в венозную систему приводит к развитию механической лимфатической недостаточности (лимфогенный фактор).

•  Увеличение осмотического давления в тканях (осмотический фактор патогенеза).

♦ Причины: венозный застой и лимфатическая недостаточность, изменение метаболизма в условиях гипоксии.

♦ Механизм реализации: увеличение образования метаболитов и снижение транспорта осмотически активных веществ от тканей приводит к повышению осмотического давления в интерстициальной жидкости и включению осмотического фактора.

•  Повышение проницаемости сосудистой стенки (мембраногенный фактор).

♦ Причина: перерастяжение сосудов в условиях гиперволемии.

♦ Механизм реализации: облегчение фильтрации воды и повышение выхода белка из крови в интерстициальное пространство.

•  Развитие печёночной недостаточности (онкотический фактор патогенеза).

♦ Причина: нарушение кровоснабжения печени.

♦ Механизмы реализации: расстройства энергетического, субстратного и кислородного обеспечения синтеза белка в гепатоцитах приводит к развитию гипоальбуминемии и включению онкотического фактора.

Таким образом, развитие отёка при сердечной недостаточности является результатом сочетанного и взаимопотенцирующего действия всех патогенетических факторов: гидродинамического, осмотического, онкотического, мембраногенного и лимфогенного.

ОТЁК ЛЁГКИХ

Как правило, отёк лёгких развивается весьма быстро. В связи с этим он чреват острой общей гипоксией и существенными расстройствами КЩР.

Причины

•  Острая сердечная недостаточность (левожелудочковая или общая).

•  Токсичные вещества, повышающие проницаемость стенок сосудов лёгких (например, фосген, фосфорорганические соединения, угарный газ, чистый кислород под высоким давлением).

Механизм развития

•  Механизм развития отёка лёгких при сердечной недостаточности.

♦ Инициальный и основной патогенетический фактор – гемодинамический. При снижении сократительной функции миокарда левого желудочка кровь застаивается в сосудах малого круга кровообращения. При увеличении давления выше 25-30 мм рт.ст. вода начинает поступать в межклеточное пространство лёгких (развивается интерстициальный отёк).

♦ При накоплении в интерстиции большого количества отёчной жидкости она проникает между клетками эпителия альвеол, заполняя полости последних (развивается альвеолярный отёк). В связи с этим нарушается газообмен в лёгких, развиваются дыхательная гипоксия и ацидоз.

•  Отёк лёгких при действии токсичных веществ. Инициальный и основной патогенетический фактор – мембраногенный. Под воздействием чистого кислорода или токсичных веществ увеличивается проницаемость стенок сосудов и изменяется форма эндотелия капилляров малого круга кровообращения.

ПОЧЕЧНЫЕ ОТЁКИ

Заболевания почек часто сопровождаются развитием отёчного синдрома. Патогенетические звенья образования отёков различны при нефритическом и нефротическом синдромах.

Отёк при нефротическом синдроме

Нефротический синдром развивается при патологии почек, как правило, первично невоспалительного генеза.

Инициальный патогенетический фактор отёка – онкотический.

•  Причина отёка – потеря белка с мочой. Протеинурия (при нефротическом синдроме она может достигать 35-55 г в сутки) является следствием:

♦ Повышения проницаемости мембран почечных клубочков для белка, что сопровождается потерей не только альбуминов, но и глобулинов (трансферрина, гаптоглобина, церулоплазмина).

♦ Нарушения реабсорбции белков в канальцах почек.

•  Звенья патогенеза:

♦ Снижение концентрации белка в плазме крови (гипопротеинемия) до 20-25 г/л (при норме 65-85 г/л).

♦ Увеличение фильтрации воды в капиллярах и накопление её избытка в межклеточном пространстве и полостях тела (онкотический фактор).

♦ Уменьшение эффективной онкотической всасывающей силы в посткапиллярах и венулах.

♦ Сдавление лимфатических сосудов отёчной тканью с развитием механической лимфатической недостаточности (лимфогенный фактор).

♦ Уменьшение ОЦК (гиповолемия).

♦ Снижение кровотока в почках (вызванное гиповолемией), активирует систему «ренин-ангиотензин-альдостерон». Это потенцирует реабсорбцию Na+ в почках.

♦ Увеличение [Na+] в плазме крови (гипернатриемия), приводящее к активации осморецепторов, усилению синтеза и высвобождения в кровь АДГ.

♦ Активация реабсорбции воды в канальцах почек.

♦ Увеличение эффективного гидростатического давления вследствие сдавления отёчной тканью венул, включающее гидростатический фактор.

Таким образом, в развитии нефротического отёка принимают участие преимущественно онкотический, гидростатический и лимфогенный факторы.

Отёк при нефритическом синдроме

Нефритический синдром развивается при заболеваниях почек первично воспалительного генеза.

Инициальный и основной патогенетический фактор – гидростатический.

•  Причина отёка: нарушение кровоснабжения почек вследствие сдавления почечных сосудов экссудатом при воспалительных заболеваниях (например, при гломерулонефрите).

•  Звенья патогенеза:

♦ Снижение кровотока в капиллярах клубочков приводит к уменьшению клубочковой фильтрации. Вследствие этого из плазмы крови выводится меньшее количество воды, чем в норме. Это вызывает увеличение ОЦК и включение гидродинамического фактора.

♦ Ишемия клеток юкстагломерулярного аппарата, приводящая к усилению синтеза и выделения в кровь ренина.

♦ Образование в крови под влиянием ренина ангиотензина I, который при участии ангиотензин-превращающего фермента (АПФ)

трансформируется в ангиотензин II. Этот процесс происходит в стенках сосудов (преимущественно в лёгких).

♦ Стимуляция ангиотензином II выделения клетками клубочковой зоны коры надпочечников альдостерона.

♦ Увеличение реабсорбции Na+ в канальцах почки с развитием гипернатриемии.

♦ Активация осморефлекса, сопровождающаяся выделением в кровь АДГ.

♦ Возрастание реабсорбции воды в канальцах почек с развитием гиперволемии, что способствует реализации гидростатического фактора.

В патогенезе нефритического отёка, помимо указанных выше, также могут принимать участие онкотический (при появлении протеинурии) и мембраногенный (при гломерулонефрите часто развивается генерализованный капилляриит) факторы.

Патогенная и адаптивная роль отёков

Патогенная роль отёков

•  Механическое сдавление тканей.

♦ Обусловливает нарушение крово- и лимфооттока в результате сдавления сосудов.

♦ Вызывает болевые ощущения в связи с растяжением и смещением участков тканей и расположенных в них нервных окончаний.

•  Нарушение обмена веществ между кровью и клетками с развитием различных дистрофий.

•  Избыточный рост клеточных и неклеточных элементов соединительной ткани в зоне отёка с развитием склероза.

•  Частое развитие инфекций в отёчной ткани. Механизм: подавление активности иммунных механизмов и факторов неспецифической защиты системы ИБН в условиях гипоксии и нарушения метаболизма.

•  Нервно-психические расстройства (при отёке мозга).

•  Расстройства КЩР вследствие образования избытка кислых продуктов анаэробного гликолиза при гипоксии.

•  Нарушение функций жизненно важных органов, чреватых смертью пациента. Так, отёк мозга, лёгких, почек, гидроперикардиум, гидроторакс могут привести к смерти больного.

Адаптивная роль отёков

Адаптивное значение отдельных реакций и процессов, наблюдающихся при развитии отёков, состоит в следующем.

•  Уменьшение содержания в крови веществ, оказывающих патогенное действие на ткани, в связи с их транспортом из сосудов в отёч-

ную жидкость (например, продуктов нормального и нарушенного метаболизма, токсинов при почечных и печёночном отёках).

•  Снижение концентрации в отёчной ткани токсичных веществ, повреждающих клетки (например, при аллергических, воспалительных, токсических отёках) в результате разбавления токсичных веществ отёчной жидкостью.

•  Предотвращение распространения токсичных веществ по организму из зоны повреждения. Отёчная жидкость сдавливает лимфатические и венозные сосуды, снижая тем самым степень распространения с кровью по ткани, органу и организму патогенных агентов: токсинов, продуктов метаболизма, микроорганизмов.

Принципы и методы устранения отёков

Мероприятия, направленные на ликвидацию или уменьшение степени отёков, базируются на этиотропном, патогенетическом и симптоматическом принципах лечения.

•  Этиотропный принцип. Имеет целью устранение причины и условий, способствующих возникновению отёка (например, заболеваний почек, печени; лечение сердечной недостаточности, проведение дезинтоксикационной терапии).

•  Патогенетический принцип. Направлен на блокирование инициального, а также вторичных звеньев механизма развития отёка.

•  Симптоматический принцип. Имеет целью устранение патологических процессов, симптомов и реакций, утяжеляющих состояние пациента: уменьшение степени гипоксии при отёке лёгких; ликвидация асцита при сердечной недостаточности или портальной гипертензии; удаление избытка отёчной жидкости из плевральной или суставных полостей.

ГЛАВА 12. НАРУШЕНИЯ ИОННОГО ОБМЕНА

Наибольшее клиническое значение имеют нарушения обмена ионов натрия, хлора, калия, кальция, фосфора и магния.

Нарушения обмена натрия

Na+ является наиболее ёмким осмотическим фактором и электролитом внеклеточной жидкости. Na+ составляет 90% от всех ионов межклеточного пространства. Именно он определяет объём внеклеточной жидкости, включая циркулирующую и депонированную кровь, лимфу, ликвор, желудочный и кишечный соки, жидкости серозных полостей. Концентрация Na+ в плазме крови в норме составляет 135- 145 ммоль/л.

ГИПЕРНАТРИЕМИЯ

Гипернатриемия – увеличение концентрации Na+ в плазме крови выше нормы.

Причины

•  Избыточное (более 12 г в сутки) поступление натрия в организм.

♦ Потребление с пищей и жидкостями (например, при пересаливании пищи, питьё минеральных вод).

♦ Парентеральное введение с лечебной целью (например, растворов NaCl).

•  Сниженное выведение натрия из организма.

♦ Почечная недостаточность.

♦ Гиперсекреция ренина.

♦ Повышенное образование ангиотензина.

♦ Альдостеронизм.

•  Гемоконцентрация – уменьшение содержания воды в крови.

♦ Гипогидратация организма.

♦ Отёчный синдром.

Последствия

♦ Гиперосмолярность крови и других биологических жидкостей (вследствие высокой осмотической активности Na+).

♦ Гипогидратация клеток, их сморщивание и, нередко, деструкция (в результате транспорта воды из клеток в интерстиций по градиенту осмотического давления).

♦ Отёк (в результате включения осмотического фактора).

♦ Повышение возбудимости нервной и мышечной тканей (вследствие увеличения внутриклеточного Na+ и снижения порога возбудимости).

♦ Артериальная гипертензия (в связи с накоплением избытка Naв эндотелии и ГМК стенки артериол, что приводит к вазоконстрикции и увеличению ОПСС).

♦ Расстройства ВНД (нередко развиваются чувство страха, депрессия).

Механизмы компенсации

•  Стимуляция секреции АДГ (как результат активации осморецепторов и нейронов центра жажды). Задержка в связи с этим жидкости в организме может снизить степень или устранить гипернатриемию за счёт гемодилюции.

•  Увеличение продукции натрийуретических факторов (атриопептина, почечных Пг).

Методы устранения гипернатриемии

•  Ликвидация причины, вызывающей повышение уровня Na+ в крови.

•  Стимуляция выведения Na+ из крови диуретиками (например, фуросемидом).

•  Парентеральное введение жидкостей (например, 5% раствора глюкозы), которые снижают [Na+] в крови.

ГИПОНАТРИЕМИЯ

Гипонатриемия – уменьшение концентрации Na+ в плазме крови ниже нормы.

Причины

•  Недостаточное (менее 6 г в сутки) поступление натрия в организм.

♦ Полное голодание.

♦ Частичное (натриевое) голодание (например, при бессолевой диете).

•  Избыточное выведение натрия из организма.

♦ Повышенная экскреция натрия почками (например, при гипоальдостеронизме, СД, хронических нефритах, почечной недостаточности, применении диуретиков, гиперпродукции предсердного натрийуретического фактора).

♦ Длительное обильное потоотделение.

♦ Хроническая диарея.

♦ Многократная рвота.

•  Гемодилюция – увеличение содержания воды в крови.

♦ Повышенное питьё жидкости.

♦ Парентеральное введение растворов, не содержащих натрия (например, при дезинтоксикационной терапии).

♦ Недостаточность экскреторной функции почек.

♦ Поступление жидкости из интерстиция в сосуды (например, при устранении гипопротеинемических отёков).

Последствия

♦ Гипоосмолярность крови и других жидкостей организма.

♦ Гипергидратация клеток и их набухание (в результате тока в них жидкости из интерстиция по градиенту осмотического давления).

♦ Снижение тургора, эластичности кожи и слизистых оболочек, их сухость (как следствие уменьшения жидкости в интерстициальном пространстве – внеклеточной гипогидратации).

♦ Снижение возбудимости нервной и мышечной тканей (в результате повышения порога возбудимости клеток в условиях низкого внеклеточного уровня Na+).

♦ Мышечная гипотония (вследствие понижения возбудимости миоцитов).

♦ Артериальная гипотензия (в результате снижения тонуса ГМК стенок сосудов, а также – уменьшения сократительной функции миокарда и сердечного выброса).

♦ Нарушение ВНД, вплоть до развития астении и расстройств сознания (вследствие гипергидратации нейронов и гипоксии мозговой ткани).

♦ Диспептические расстройства – снижение аппетита, тошнота, рвота (как результат расстройств функции нервных центров гипоталамуса).

Механизмы компенсации

•  Активация синтеза и секреции в кровь альдостерона, стимулирующего реабсорбцию натрия в почках.

•  Торможение продукции атриопептина и Пг, подавляющих канальцевую реабсорбцию Na+.

Методы устранения гипонатриемии

•  Ликвидация причины гипонатриемии.

•  Внутривенное введение 1-2% раствора NaCl.

•  Инфузия плазмы крови, плазмозаменителей и белоксодержащих растворов.

Нарушения обмена хлора

Нарушения обмена Cl, как правило, сопутствуют расстройствам метаболизма натрия, а также калия. Транспорт Cl через клеточную мембрану осуществляется в обмен на HCO3 (этот механизм обозначается как С1/НС03-антипорт). Нормальная концентрация Cl в плазме крови составляет 98-106 ммоль/л.

ГИПЕР- И ГИПОХЛОРЕМИЯ

Гиперхлоремия – увеличение содержания С1 в плазме крови выше нормы.

Гипохлоремия – снижение содержания С1 в плазме крови ниже нормы.

Причины гиперхлоремии

♦ Повышенное потребление хлоридов с пищей и питьём, в основном в составе поваренной соли.

♦ Сниженное выведение Cl из организма (например, вследствие почечной недостаточности).

♦ Гемоконцентрация.

♦ Перераспределение Cl из тканей в кровь.

Причины гипохлоремии

•  Увеличение выведения Cl из организма.

♦ Обильная рвота желудочным содержимым (например, при инфекционных заболеваниях, стенозе привратника, кишечной непроходимости).

♦ Хронические диареи (например, у пациентов с энтероколитами, синдромами мальабсорбции).

•  Перераспределение Cl из крови в ткани (например, в условиях ацидоза, избытка жидкости в интерстициальном пространстве, обширного асцита).

•  Снижение поступления хлоридов в организм (например, при полном голодании или исключении из рациона поваренной соли).

Проявления гипо- и гиперхлоремии не имеют выраженной специфики. Они перекрываются признаками нарушений обмена натрия и калия (с которыми гипо- и гиперхлоремии, как правило, сочетаются), а также признаками основной клинической патологии. Методы устранения (снижения степени) гипо- и гиперхлоремии принципиально те же, что и при гипо- и гипернатриемии и гипо- и гиперкалиемии соответственно.

Нарушения обмена калия

K+ является основным катионом внутриклеточной жидкости организма. В ней находится приблизительно 90% этих катионов. Значительная часть K+ связана с белками, углеводами, фосфатами, креатинином. В плазме крови концентрация K+ составляет 3,3-5,1 ммоль/л, а в клетках – около 155 ммоль/л. Соотношение внутри- и внеклеточного содержания K+ является основным фактором состояния электрической активности возбудимых структур.

В сутки в организм человека должно поступать 40-60 ммоль (2-4 г) калия. Примерно такое же количество его выводится из организма, в основном, почками.

ГИПЕРКАЛИЕМИЯ

Гиперкалиемия – увеличение концентрации K+ в плазме крови выше нормального уровня.

Причины

•  Уменьшение экскреции K+ почками.

♦ Почечная недостаточность. Почки способны выводить до 1000 ммоль/сут калия, т.е. значительно больше, чем его поступает в норме в организм. Повреждение почечной ткани может привести к гиперкалиемии.

♦ Гипоальдостеронизм (например, болезнь Аддисона – надпочечниковая недостаточность) или снижение чувствительности эпителия канальцев к альдостерону у пациентов с нефропатиями, системной красной волчанкой.

•  Перераспределение калия из клеток в кровь.

♦ Повреждение и разрушение клеток (например, при гемолизе; при синдроме длительного раздавливания тканей, их ожоге или размозжении).

♦ Гипоинсулинизм.

♦ Внутриклеточный ацидоз, который стимулирует выход K+ из клеток и одновременно – транспорт Cl в клетки.

•  Введение избытка калия в организм.

Последствия гиперкалиемии являются результатом нарушения формирования МП и ПД и нервно-мышечной передачи возбуждения.

♦ Мышечная гипотония, параличи мышц и гипорефлексия, атония кишечника и боли в мышцах.

♦ Брадикардия и аритмии сердца. При концентрации калия 8- 10 ммоль/л возможна атриовентрикулярная и внутрижелудочковая блокада проведения возбуждения, а при 13 ммоль/л – остановка сердца в диастоле.

Методы устранения гиперкалиемии

•  Ликвидация причины гиперкалиемии.

•  Активация транспорта K+ из межклеточной жидкости в клетки.

♦ Внутривенное введение раствора хлорида кальция.

♦ Внутривенное вливание раствора глюкозы в комбинации с инсулином. Транспорт глюкозы в клетки под влиянием инсулина стимулирует переход в них и K+. Это сравнительно быстро уменьшает степень гиперкалиемии и её кардиотоксические эффекты.

♦ Внутривенная инфузия бикарбоната натрия потенцирует транспорт K+ в клетки.

•  Стимуляция механизмов выведения избытка K+ из организма.

♦ Применение диуретиков (например, фуросемида).

♦ Введение препаратов альдостерона (например, в виде дезоксикортикостерона ацетата).

♦ Использование катионообменных смол (например, сульфоната натрия). Попадая в кишечник, смолы удаляют до 60-100 ммоль калия в течение первых 4-6 ч. Это связано с тем, что в кишечном соке содержание калия в 2-4 раза выше, чем в плазме крови.

♦ Проведение диализа. Гемодиализ позволяет снизить содержание K+ в плазме крови наполовину уже через 3-4 ч от его начала.

ГИПОКАЛИЕМИЯ

Гипокалиемия – уменьшение концентрации K+ в плазме крови ниже нормы.

Причины

•  Недостаточное (менее 10 ммоль/сут) поступление калия в организм с пищей (например, при голодании или ограничении приёма продуктов, содержащих соединения калия – овощей, молочных изделий).

•  Избыточное выведение калия из организма.

♦ Хронические профузные диареи. Кишечные секреты содержат большое количество калия.

♦ Многократная рвота. Содержание калия в желудочном соке невысокое. Однако развитие гиповолемии вызывает вторичный гиперальдостеронизм и увеличение экскреции K+ почками.

♦ Повышенное выведение калия почками (при полиурии).

•  Перераспределение K+ из крови и межклеточной жидкости в клетки.

♦ Увеличение уровня инсулина в крови.

♦ Гиперкатехоламинемия (в результате применения препаратов адреналина, норадреналина, допамина или при феохромоцитоме).

♦ Передозировка фолиевой кислоты или витамина B12 (указанные вещества стимулируют пролиферацию клеток и потребление ими K+).

Последствия

•  Снижение нервно-мышечной возбудимости.

♦ Мышечная слабость, вплоть до паралича.

♦ Снижение моторики (гипокинезия) желудка и кишечника.

•  Изменения ЭКГ: удлинение интервалов P-Q и Q-T, сглаженный или отрицательный зубец T.

•  Сонливость, апатия, снижение работоспособности, астения.

•  Внутриклеточный ацидоз, обусловленный снижением [K+] в клетках и накоплением в них избытка H+.

•  Дистрофические изменения в органах и тканях. Наиболее выражены они в сердце, почках, печени, кишечнике.

Методы устранения гипокалиемии

•  Ликвидация причины гипокалиемии.

•  Введение солей калия. Соли калия могут содержать любые анионы, но предпочтение должно отдаваться хлориду калия, поскольку, как правило, у пациентов выявляется и гипохлоремия (при этом необходимо периодически контролировать уровень калия в крови и оценивать параметры ЭКГ).

Нарушения обмена кальция

В организме кальций содержится, в основном, в костях и зубах (в виде оксиапатита). В плазме крови общее содержание кальция в норме составляет 2,15-2,55 ммоль/л.

ГИПЕРКАЛЬЦИЕМИЯ

Гиперкальциемия – повышение общего содержания кальция в плазме крови более нормы.

Причины

•  Избыточное поступление солей кальция в организм.

♦ Парентеральное введение (например, раствора CaC12).

♦ Увеличение уровня или эффектов витамина D (стимулирующего всасывание кальция в тонком кишечнике).

•  Уменьшение экскреции Ca2+ почками.

♦ Увеличение содержания или эффектов ПТГ (например, при гиперплазии или аденоме паращитовидных желёз).

♦ Гипервитаминоз D.

♦ Снижение содержания или эффектов кальцитонина.

•  Перераспределение кальция из тканей в кровь.

♦ Ацидоз, при котором Ca2+ выводится из костной ткани в обмен на Н+.

♦ Длительное ограничение двигательной активности и действие фактора невесомости (например, при полётах в космосе).

•  Усиление ионизации кальция (например, в условиях ацидоза, при котором увеличивается доля Ca2+ в плазме крови при нормальном общем его содержании).

•  Злокачественные опухоли – одна из наиболее частых причин гиперкальциемии.

Проявления и последствия

Патологические симптомы появляются при гиперкальциемии более 2,75-3 ммоль/л.

♦ Гиперкальциурия (как следствие гиперкальциемии).

♦ Образование конкрементов в паренхиме почек (нефрокальциноз) и мочевыводящих путях. Является непосредственным результатом выведения избытка Ca2+ почками.

♦ Остеопороз – дистрофия костной ткани с уменьшением её плотности – является следствием декальцификации костей и резорбции их остеокластами. Это явление обозначают как паратиреоидная остеодистрофия. Она нередко сопровождается болями в костях и их переломами.

♦ Психические расстройства характеризуются снижением эффективности интеллектуальной деятельности, эмоциональной неустойчивостью и быстрой утомляемостью.

♦ Нарушение работы мышц: мышечная гипотония и снижение нервно-мышечной возбудимости (вплоть до парезов и параличей).

♦ Желудочно-кишечные расстройства в виде анорексии, тошноты, рвоты, ослабления перистальтики желудка и кишечника, запоров, болей в животе, нередко выявляются пептические язвы.

Методы устранения гиперкальциемии

•  Устранение причины гиперкальциемии.

•  Выведение избытка кальция из организма путём внутривенной инфузии изотонического раствора хлорида натрия (в объёме до 3-4 л в сутки) в сочетании с диуретиками.

•  Торможение процесса резорбции костей остеокластами применением препаратов кальцитонина и эстрогенов. Эти препараты одновременно способствуют рекальцификации костной ткани.

ГИПОКАЛЬЦИЕМИЯ

Гипокальциемия – снижение концентрации кальция в плазме крови ниже нормы.

Причины

♦ Гипопаратиреоз. При гипопаратиреозе тормозится высвобождение кальция из костей и стимулируется его выведение почками.

♦ Гиповитаминоз D. При этом существенно снижается всасывание кальция в кишечнике.

♦ Гиперсекреция кальцитонина, являющегося антагонистом ПТГ.

♦ Патология кишечника (хронические энтериты, резекция фрагментов тонкой кишки, синдромы мальабсорбции).

♦ Ахолия – отсутствие в кишечнике жёлчи. Жёлчь необходима для обеспечения метаболизма жирорастворимого витамина D.

♦ Хронический некомпенсированный алкалоз (см. главу 13 «Нарушения кислотно-щелочного равновесия»).

♦ Гипомагниемия. Снижение содержания Mg2+ в крови тормозит секрецию ПТГ, а также уменьшает эффекты этого гормона и витамина D в костной ткани.

♦ Гипоальбуминемия. Сопровождается снижением уровня общего кальция плазмы крови за счёт его фракции, связанной с альбуминами.

Проявления и последствия

•  Повышение нервно-мышечной возбудимости характеризуется комплексом признаков.

♦ Тетанические судороги различных групп мышц. При лёгкой степени гипокальциемии отмечается латентная тетания. Она выявляется развитием судорог мышц кисти («кисть акушера») при надавливании на мышцы в области плеча (симптом Труссо) или мышц лица при постукивании в области прохождения ветви лицевого нерва (симптом Хвостека).

♦ Чувство онемения отдельных частей тела.

•  Гипокоагуляционный и геморрагический синдромы. Обусловлены дефицитом Ca2+, который регулирует активность ряда факторов гемокоагуляции, а также проницаемость стенок сосудов.

•  Дистрофические изменения различных тканей (производных эктодермы) характеризуются дефектами зубов в результате нарушения кальцификации дентина и эмали; гипотрофией, неровностью и ломкостью ногтей; сухостью кожи; ломкостью волос; кальцификацией хрусталика с развитием катаракты.

•  Сердечная недостаточность и артериальная гипотензия (в основном за счёт снижения сердечного выброса).

Методы устранения гипокальциемии

•  Ликвидация причины гипокальциемии. Наиболее частая причина – гипопаратиреоз. Для его устранения проводят заместительную терапию ПТГ.

•  Устранение острой гипокальциемии и связанных с этим приступов тетании. Это достигается с помощью внутривенного введения препаратов кальция (например, раствора хлорида кальция).

•  Ликвидация хронической гипокальциемии. Обеспечивается пероральным введением в организм препаратов кальция (например, глюконата кальция) и витамина D.

•  Коррекцию КЩР проводят при наличии алкалоза (см. главу 13 «Нарушения кислотно-щелочного равновесия»).

Нарушения обмена фосфора

Метаболизм фосфора тесно связан с обменом кальция. Фосфор является одним из основных минеральных компонентов костной ткани, где его содержится около 85% от общего количества в организме. Концентрация фосфатов в плазме крови в норме составляет 0,8- 1,45 ммоль/л.

ГИПЕРФОСФАТЕМИЯ

Гиперфосфатемия – увеличение концентрации фосфатов в плазме крови выше нормы.

Причины

•  Введение в организм избытка фосфатов. Это может происходить при введении их внутривенно, per osили в кишечник (например, в клизме).

•  Уменьшение выведения фосфатов из организма, например при: ♦ Почечной недостаточности.

♦ Гипопаратиреозе. Снижение содержания ПТГ сопровождается активацией реабсорбции фосфатов в канальцах почек.

♦ Гипертиреозе и избытке СТГ. В этих случаях гиперфосфатемия развивается вследствие избыточной реабсорбции фосфатов в почках.

•  Увеличение высвобождения фосфатов из тканей в условиях:

♦ Острой деструкции мышечной ткани (например, при обширных механических травмах, синдроме длительного раздавливания – «краш-синдроме», выраженной ишемии тканей).

♦ Распада опухолевой ткани (например, при химиоили радиотерапии).

Проявления

♦ Гипокальциемия обусловлена либо причиной гиперфосфатемии (например, гипопаратиреозом или гиперсекрецией кальцитонина), либо увеличением уровня фосфатов в крови. Последнее стимулирует механизмы выведения Ca2+ из организма, перераспределения его в тканях, торможения всасывания в кишечнике.

♦ Артериальная гипотензия и сердечная недостаточность обусловлены гипокальциемией, закономерно развивающейся при увеличении уровня фосфатов в крови.

Методы устранения гиперфосфатемии

•  Ликвидация причины гиперфосфатемии.

•  Устранение острой гиперфосфатемии путём парентерального введения изотонического раствора, плазмы крови или плазмозаменителей. При острой обширной деструкции тканей проводится гемодиализ.

ГИПОФОСФАТЕМИЯ

Гипофосфатемия – уменьшение концентрации фосфатов в плазме крови ниже нормы.

Причины

•  Недостаточное поступление фосфатов с пищей.

•  Чрезмерное выведение фосфатов из организма почками при:

♦ Гиперпаратиреозе.

♦ Первичных дефектах почечных канальцев, например, при отравлении солями тяжёлых металлов и цистинозе.

♦ Специфическом дефекте трансмембранного переноса фосфатов у пациентов с витамин D-резистентной формой рахита.

•  Избыточная потеря фосфатов через ЖКТ. Наблюдается при передозировке антацидов – ЛС щелочного характера, снижающих кислотность желудка.

•  Перераспределение фосфатов из крови и межклеточной жидкости в клетки в условиях:

♦ Активации гликолиза. При этом в клетке увеличивается образование фосфорилированных углеводных групп. Это приводит к снижению клеточного пула органического фосфата, диффузии последнего из межклеточной жидкости и крови с развитием гипофосфатемии.

♦ Алкалоза, характеризующегося увеличением pH, что стимулирует гликолиз и потребление клеткой фосфатов.

Проявления

♦ Расстройства ВНД, сопровождающиеся заторможённостью, быстрой усталостью при выполнении интеллектуальной работы, потерей сознания.

♦ Мышечная гипотония и гипокинезия.

♦ Сердечная недостаточность.

♦ Остеопороз и остеомаляция в результате деминерализации костей в связи с дефицитом в них солей кальция и фосфора.

Методы устранения гипофосфатемии

•  Лечение основного заболевания: коррекция гиперпаратиреоза, дефектов процесса реабсорбции фосфатов в канальцах почек; состояний, сопровождающихся активацией гликолиза или развитием алкалоза.

•  Введение в организм препаратов фосфата (до 1500-2000 мг/сут в пересчёте на фосфор) под контролем содержания фосфатов в плазме крови.

Нарушения обмена магния

В организме содержится до 25-30 г магния. Около 67% его входит в состав костной ткани, примерно 31% содержится внутриклеточно (в основном в мышечных клетках). Магний является кофактором почти 300 клеточных ферментов. В плазме крови в норме концентрация магния составляет 0,65-1,1 ммоль/л.

ГИПЕРМАГНИЕМИЯ

Гипермагниемия – повышение концентрации магния в плазме крови больше нормы.

Причины

•  Уменьшение выведения магния из организма почками. Наблюдается при нарушении экскреторной функции почек (при почечной недостаточности).

•  Избыточное поступление магния в организм, например при:

♦ Приёме высоких доз ЛС, содержащих магний (например, некоторых антацидов, слабительных).

♦ Внутривенном введении растворов солей магния женщинам с токсикозом беременности.

•  Перераспределении магния из клеток в межклеточную жидкость и кровь при ацидозе, гипотиреозе.

Проявления гипермагниемии обусловлены торможением нервно-мышечной передачи, снижением нервной и мышечной возбудимости. Это приводит к:

♦ Угнетению ВНД, вплоть до потери сознания («магнезиальный сон»). В основе этого лежит нарушение трансмембранного распределения ионов.

♦ Снижению альвеолярной вентиляции в результате угнетения нейронов дыхательного центра.

♦ Мышечной гипотонии, гипокинезии, иногда параличам.

♦ Артериальной гипотензии.

Методы устранения гипермагниемии

•  Ликвидация причины, приведшей к повышению уровня магния в крови.

•  Внутривенное введение изотонических растворов солей натрия и кальция (последний является функциональным антагонистом магния).

•  При тяжёлом состоянии пациента проводят гемодиализ.

ГИПОМАГНИЕМИЯ

Гипомагниемия – уменьшение концентрации Mg2+ в плазме крови ниже нормы.

Причины

•  Недостаточное поступление магния в организм в условиях:

♦ Дефицита магния в пище.

♦ Нарушения всасывания соединений магния в тонком кишечнике. Развивается при длительных диареях, злоупотреблении слабительными, синдромах мальабсорбции, ахолии, хронических энтеритах.

•  Повышенное выведение магния из организма при:

♦ Первичных дефектах канальцев почек (страдает реабсорбция ионов, в том числе Mg2+, развивается синдром почечного канальцевого ацидоза).

♦ Вторичном подавлении процесса реабсорбции Mg2+ в канальцах почек (например, при гиперальдостеронизме, гипопаратиреозе, избыточном приёме петлевых диуретиков, гиперкальциемии, гипофосфатемии).

•  Перераспределение магния из крови в клетки при респираторном алкалозе, гиперинсулинемии, алкогольной абстиненции, состояниях после устранения гиперпаратиреоза.

Проявления

♦ Увеличение нервно-мышечной возбудимости. Характеризуется тремором, спазмом мышц кистей и стоп, двигательным возбуждением.

♦ Тахикардия и аритмии сердца, повышение АД.

♦ Гипокальциемия обусловлена подавлением секреции ПТГ в условиях низкого содержания магния в организме.

♦ Гипокалиемия развивается в связи с торможением реабсорбции K+ в почках.

♦ Трофические эрозии и язвы кожи вызваны снижением активности магнийсодержащих ферментов, нарушением обмена углеводов и белков.

♦ Генерализованная кальцификация тканей, особенно стенок сосудов, почек и хрящей. Этот феномен связан с повышенным транспортом кальция в ткани в условиях низкой концентрации магния в межклеточной жидкости.

♦ Нарушение усвоения пищи в кишечнике и обусловленные этим задержка роста и гипотермия, особенно у детей. Причины: снижение активности магнийсодержащих ферментов, участвующих в мембранном пищеварении.

Методы устранения гипомагниемии

•  Ликвидация патологического состояния, вызвавшего снижение уровня магния в крови.

•  Введение в организм препаратов магния (например, раствора сульфата магния).

•  Увеличение содержания в диете продуктов питания, богатых магнием (например, фасоли, гороха, пшена).

ГЛАВА 13. НАРУШЕНИЯ КИСЛОТНО- ЩЕЛОЧНОГО РАВНОВЕСИЯ

Показатели кислотно-щелочного равновесия

Показатели КЩР подразделяют на основные и дополнительные (табл. 13-1).

•  Основные показатели. Оценку КЩР и его сдвигов в клинической практике проводят с учётом нормальных диапазонов его основных показателей: pH, pCO2, стандартного бикарбоната плазмы крови, буферных оснований и избытка оснований капиллярной крови.

•  Дополнительные показатели. С целью выяснения причины и механизма развития негазовых форм нарушений КЩР определяют ряд дополнительных показателей крови (КТ, МК) и мочи (титруемая кислотность – ТК и аммиак).

Таблица 13-1. Показатели кислотно-щелочного равновесия

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A012,pic_0019.png,-1,,00000000,)Окончание табл. 13-1

Дополнительные
КТ крови

МК крови

ТК суточной мочи

Аммиак суточной мочи

5-25 мг/л 0,3-1,3 ммоль/л 20-40 мэкв/сут 10-107 ммоль/сут 0,5-2,5 мг% 6-16 мг% 20-40 ммоль/л 30-50 ммоль/л

Механизмы регуляции кислотно-щелочного равновесия

В норме в организме образуется почти в 20 раз больше кислых продуктов, чем щелочных. В связи с этим доминируют системы, обеспечивающие нейтрализацию, экскрецию и секрецию избытка соединений с кислыми свойствами. К этим системам относятся химические буферные системы и физиологические механизмы регуляции КЩР.

ХИМИЧЕСКИЕ БУФЕРНЫЕ СИСТЕМЫ

Химические буферные системы представлены, в основном, бикарбонатным, фосфатным, белковым и гемоглобиновым буферами. Буферные системы начинают действовать сразу же при увеличении или снижении [H+] и способны устранить умеренные сдвиги КЩР в течение 10-40 с. Ёмкость и эффективность буферных систем крови весьма высока (табл. 13-2).

Таблица 13-2. Относительная ёмкость буферов крови (в %)

Плазма крови Эритроциты
Гидрокарбонатный Гемоглобиновый Белковый Фосфатный Общая ёмкость 35

7 1

43

18

35

4

57

Принцип действия химических буферных систем заключается в трансформации сильных кислот и сильных оснований в слабые. Гидрокарбонатная буферная система – основной буфер крови и межклеточной жидкости. Гидрокарбонатный буфер внеклеточной жидкости состоит из смеси угольной кислоты – H2CO3 и гидрокарбоната натрия – NaHCO3. В клетках в состав соли угольной кислоты входят калий и магний. Гидрокарбонатный буфер – система открытого типа, она ассоциирована с функцией внешнего дыхания и почек (табл. 13-3).

Таблица 13-3. Начальные сдвиги и компенсаторные реакции при нарушениях кислотно-щелочного равновесия

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A012,pic_0020.png,-1,,00000000,)

Фосфатная буферная система играет существенную роль в регуляции КЩР внутри клеток, особенно – канальцев почек. Это обусловлено более высокой концентрацией фосфатов в клетках по сравнению с внеклеточной жидкостью. Фосфатный буфер состоит из двух компонентов: щелочного – (Na2HPO4) и кислого – (NaH2PO4). Белковая буферная система – главный внутриклеточный буфер. На его долю приходится примерно три четверти буферной ёмкости внутриклеточной жидкости. Компонентами белкового буфера являются слабодиссоциирующий белок с кислыми свойствами (белок-COOH) и соли сильного основания (белок-COONa).

Гемоглобиновая буферная система – наиболее ёмкий буфер крови. Гемоглобиновый буфер состоит из кислого компонента – оксигенированного HbO2 и основного – неоксигенированного Hb. Карбонаты костной ткани функционируют как депо для буферных систем организма. В костях содержится большое количество солей угольной кислоты: карбонаты кальция, натрия, калия и др. При быстром увеличении содержания кислот (например, при острой сердечной, дыхательной или почечной недостаточности; шоке, коме и других состояниях) костная ткань может обеспечивать до 30-40% буферной ёмкости.

ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ

Наряду с мощными и быстродействующими химическими системами в организме функционируют органные механизмы компенсации и устранения сдвигов КЩР. Для их реализации и достижения необходимого эффекта требуется больше времени – от нескольких минут до нескольких часов. К наиболее эффективным физиологическим механизмам регуляции КЩР относят процессы, протекающие в лёгких, почках, печени и ЖКТ.

Лёгкие обеспечивают устранение или уменьшение сдвигов КЩР путём изменения объёма альвеолярной вентиляции. Почки способствуют устранению сдвигов КЩР крови с помощью ацидогенеза, аммониогенеза, секреции фосфатов и К+,Na+-обменного механизма, которые сопряжены с образованием гидрокарбоната и поступлением его в плазму крови.

Печень играет существенную роль в компенсации сдвигов КЩР. В ней протекают, помимо общих для всего организма, специфические реакции метаболизма, участвующие в регуляции КЩР:

♦ Синтез белков крови, входящих в белковую буферную систему.

♦ Образование аммиака, способного нейтрализовать кислоты как в самих гепатоцитах, так и в плазме крови и в межклеточной жидкости.

♦ Синтез глюкозы из «кислых» неуглеводных веществ – аминокислот, глицерина, лактата, пирувата.

♦ Выведение из организма нелетучих кислот – глюкуроновой и серной при детоксикации продуктов метаболизма и ксенобиотиков.

♦ Экскреция в кишечник кислых и основных соединений с жёл- чью.

Желудок участвует в коррекции сдвигов КЩР, главным образом, путём изменения секреции соляной кислоты: при защелачивании жидких сред организма этот процесс тормозится, а при закислении – усиливается.

Кишечник способствует уменьшению сдвигов КЩР посредством нескольких механизмов.

♦ Секреции кишечного сока, содержащего большое количество гидрокарбоната. При этом в плазму крови поступает H+.

♦ Изменении количества всасываемой жидкости, что способствует нормализации водного и электролитного баланса в клетках и биологических жидкостях.

♦ Реабсорбции компонентов буферных систем (Na+, K+, Ca2+, Cl, HCO3).

ТИПОВЫЕ ФОРМЫ НАРУШЕНИЙ КИСЛОТНОЩЕЛОЧНОГО РАВНОВЕСИЯ

Расстройства КЩР дифференцируют по нескольким критериям (табл. 13-4).

Таблица 13-4. Виды нарушений кислотно-щелочного равновесия

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A012,pic_0021.png,-1,,00000000,)Окончание табл. 13-4

Ацидоз и алкалоз

Ацидоз – типовая форма нарушения КЩР, характеризующаяся относительным или абсолютным избытком в организме кислот.

В крови при ацидозе происходит абсолютное или относительное повышение [H+] и уменьшение pH ниже нормы (условно – ниже нейтральной величины pH, принимаемой за 7,39).

Алкалоз – типовая форма нарушения КЩР, характеризующаяся относительным или абсолютным избытком в организме оснований.

В крови при алкалозе отмечается абсолютное или относительное снижение [H+] и увеличение pH (условно – выше нейтральной величины pH, принимаемой за 7,39).

Компенсированные и некомпенсированные нарушения КЩР

Определяющим параметром степени компенсированности нарушений КЩР является величина pH.

•  Компенсированными сдвигами КЩР считают такие, при которых pH крови не отклоняется за пределы диапазона нормы: 7,35-7,45. За «нейтральную» величину условно принимают 7,39. При компенсированных формах нарушений КЩР изменяется абсолютная концентрация компонентов гидрокарбонатной буферной системы. Однако, соотношение [H2CO3]/[NaHCO3] сохраняется 20/1.

♦ При pH 7,38-7,35 – компенсированный ацидоз.

♦ При pH 7,40-7,45 – компенсированный алкалоз.

•  Некомпенсированными нарушениями КЩР называют такие, при которых pH крови выходит за диапазон нормы. Некомпенсированные ацидозы и алкалозы характеризуются значительными отклонениями как абсолютной концентрации H2CO3 и NaHCO3, так и их соотношения.

♦ При pH 7,34 и ниже – некомпенсированный ацидоз.

♦ При pH 7,46 и выше – некомпенсированный алкалоз.

Газовые расстройства кислотно-щелочного равновесия

Газовые (респираторные) расстройства КЩР характеризуются первичным изменением содержания в организме CO2 и, как следствие, – концентрации угольной кислоты в соотношении: [HCO3]/[H2CO3]. Угольная кислота диссоциирует с образованием H+. При газовом ацидозе концентрация угольной кислоты увеличивается, при газовом алкалозе – уменьшается.

Респираторный ацидоз характеризуется снижением pH крови и гиперкапнией (повышением рСО2 крови более 40 мм рт.ст.). Причина: гиповентиляция лёгких (например, при спазме бронхиол или обтурации дыхательных путей).

Респираторный алкалоз характеризуется увеличением pH крови и гипокапнией (уровень рСО2 крови 35 мм рт.ст. и менее). Причина: гипервентиляция лёгких (например, при проведении ИВЛ).

Негазовые нарушения кислотно-щелочного равновесия

Негазовые (нереспираторные) нарушения КЩР характеризуются первичным изменением содержания гидрокарбоната в соотношении: [HCO3]/[H2CO3]. При негазовых ацидозах концентрация гидрокарбонатов уменьшается, а при негазовых алкалозах – увеличивается.

Выделяют три группы негазовых расстройств КЩР: метаболические, выделительные и экзогенные (табл. 13-4).

МЕТАБОЛИЧЕСКИЕ РАССТРОЙСТВА КЩР

Метаболический ацидоз – одна из наиболее частых форм нарушения КЩР.

Причины метаболического ацидоза.

♦ Нарушения метаболизма, приводящие к накоплению избытка нелетучих кислот и других веществ с кислыми свойствами (например, при сердечной недостаточности, большинстве типов гипоксии).

♦ Недостаточность буферных систем и физиологических механизмов по нейтрализации и выведению избытка нелетучих кислот из организма (например, при печёночной или почечной недостаточности, гипопротеинемии).

Метаболический алкалоз характеризуется повышением pH крови и увеличением концентрации бикарбоната в результате расстройств обмена ионов Na+, Ca2+ и К+.

•  Причины

♦ Гиперальдостеронизм приводит к гипернатриемии и гипокалиемии.

♦ Гипофункция паращитовидных желёз сопровождается гипокальциемией и гиперфосфатемией.

•  Механизмы развития

♦ Избыточная секреция эпителием канальцев почек в первичную мочу H+ и К+, а также реабсорбция Na+из первичной мочи в кровь (вследствие изменения активности Na++-АТФазы под влиянием альдостерона).

♦ Накопление в клетках H+ с развитием внутриклеточного ацидоза.

♦ Задержка в клетках Na+ и гипергидратация клеток в связи с гиперосмией.

ВЫДЕЛИТЕЛЬНЫЕ РАССТРОЙСТВА КЩР

Выделительные расстройства КЩР являются результатом нарушения выделения из организма кислот либо оснований.

Выделительные ацидозы

Различают три вида выделительных ацидозов.

•  Почечный выделительный ацидоз (накопление в организме кислот, потеря оснований) возникает вследствие почечной недостаточности, интоксикации сульфаниламидами, гипоксии ткани почек.

•  Кишечный выделительный ацидоз (потеря организмом оснований) развивается вследствие диареи, фистулы или открытой раны тонкого кишечника.

•  Гиперсаливационный выделительный ацидоз (потеря организмом оснований) связан со стоматитами, токсикозом беременных, гельминтозами, отравлением никотином или препаратами ртути.

Выделительные алкалозы

Существует три вида выделительных алкалозов.

•  Желудочный выделительный алкалоз развивается вследствие потери организмом HCl при рвоте желудочным содержимым (например, при токсикозе беременных, пилороспазме, пилоростенозе, кишечной непроходимости) или отсасывании его через зонд.

•  Почечные (ренальные) выделительные алкалозы обусловлены выведением из организма Na+ и задержкой гидрокарбоната почками.

♦ Торможение реабсорбции Na+ и воды под влиянием диуретиков (например, фуросемида) приводит к выведению из организма Na+, а вместе с ним и Cl в повышенном количестве, а содержание щелочных анионов гидрокарбоната в плазме крови возрастает.

♦ Наличие в клубочковом фильтрате почек плохо реабсорбируемых ионов (анионов нитрата, сульфата, продуктов метаболизма пенициллина). Накопление плохо реабсорбируемых анионов в первичной моче сопровождается усилением экскреции почками Ки H+ и реабсорбции HCO3.

•  Кишечный (энтеральный) выделительный алкалоз развивается вследствие повышенного выделения из организма К+ кишечником (например, при злоупотреблении слабительными), что стимулирует транспорт в клетки H+ из межклеточной жидкости и плазмы крови, где развивается алкалоз.

ЭКЗОГЕННЫЕ РАССТРОЙСТВА КЩР

Эти расстройства КЩР развиваются в результате попадания в организм экзогенных агентов с кислыми или основными свойствами.

Экзогенный ацидоз

Экзогенный ацидоз является следствием поступления в организм соединений с кислыми свойствами.

•  Причины:

♦ Приём растворов нелетучих кислот (например, соляной, серной, азотной) по ошибке, либо с целью отравления.

♦ Продолжительное употребление продуктов питания и питья, содержащих большое количество кислот (например, лимонной, яблочной, соляной, салициловой).

♦ Применение ЛС, содержащих кислоты или их соли (например, ацетилсалициловой кислоты).

♦ Трансфузия препаратов донорской крови, консервированной лимоннокислым натрием.

•  Механизмы развития:

♦ Диссоциация экзогенных кислот и их солей ведёт к увеличению концентрации H+ в организме и быстрому истощению буферных систем.

♦ Нарушения обмена веществ под влиянием экзогенных кислот сопровождаются накоплением эндогенных кислых метаболитов.

♦ Повреждение печени и почек потенцирует степень ацидоза.

Экзогенный алкалоз

Экзогенный алкалоз – сравнительно редкое нарушение КЩР – является, как правило, следствием попадания в организм избытка гидрокарбоната либо щелочей.

•  Причины:

♦ Введение в течение короткого времени избытка HCO3содержащих растворов (например, при коррекции лактатацидоза или кетоацидоза у пациентов с СД).

♦ Продолжительное использование продуктов питания и питья, содержащих большое количество щелочей. Наблюдается у пациентов с язвенной болезнью желудка, принимающих в больших количествах щелочные растворы и молоко.

•  Механизм развития. Основное звено патогенеза экзогенного алкалоза – увеличение концентрации HCO3в плазме крови.

Смешанные расстройства кислотно-щелочного равновесия

В клинической практике нередко наблюдают комбинацию газовых и негазовых ацидозов или алкалозов одновременно. Примеры подобных состояний:

•  Сердечная недостаточность. У пациента может развиться смешанный ацидоз: газовый (в связи с нарушением перфузии альвеол и отёком лёгких) и негазовые: метаболический (в результате циркуляторной гипоксии) и выделительный почечный (обусловленный гипоперфузией почек).

•  Травма головного мозга или беременность. Наблюдается смешанный алкалоз: газовый (вызванный гипервентиляцией лёгких) и негазовый: выделительный желудочный (вследствие повторной рвоты желудочным содержимым).

Проявления и механизмы компенсации нарушений кислотно-щелочного равновесия

ПРОЯВЛЕНИЯ РАССТРОЙСТВ КЩР

Клиническая картина при нарушениях КЩР зависит, главным образом, от направленности изменений [H+] и pH.

Проявления ацидозов

♦ Компенсаторное увеличение альвеолярной вентиляции. При тяжёлом ацидозе может регистрироваться глубокое и шумное дыхание – периодическое дыхание Куссмауля.

♦ Нарастающее угнетение нервной системы и ВНД, что проявляется сонливостью, заторможённостью, сопором или комой (например, при кетоацидозе у пациентов с СД).

♦ Снижение кровотока в мозге, миокарде и почках. Это усугубляет нарушение функций нервной системы, сердца, а также обусловливает олигурию (уменьшение диуреза).

♦ Дисбаланс ионов вследствие активации компенсаторных механизмов: увеличение содержания ионов К+в межклеточной жидкости, гиперкалиемия, гиперфосфатемия, гипохлоремия.

♦ Гиперосмолярный и отёчный синдромы.

Проявления алкалозов

♦ Недостаточность центрального и органно-тканевого кровотока.

♦ Нарушение микрогемоциркуляции, вплоть до признаков капилляро-трофической недостаточности.

♦ Гипоксия вследствие недостаточности кровообращения и увеличения сродства Hb к кислороду.

♦ Гипокалиемия в связи с транспортом K+ из межклеточной жидкости в клетки в обмен на H+.

♦ Ухудшение нервно-мышечной возбудимости, проявляющееся мышечной слабостью, нарушением перистальтики желудка и кишечника. Указанные расстройства, а также нарушения ритма сердца являются, в основном, результатом гипокалиемии.

МЕХАНИЗМЫ КОМПЕНСАЦИИ НАРУШЕНИЙ КЩР Механизмы компенсации ацидоза направлены на нейтрализацию избытка H+. Выделяют срочные и долговременные механизмы компенсации.

•  Срочные механизмы: активация клеточных и внеклеточных буферов, Cl-HCO3-антипорта эритроцитов, увеличение альвеолярной вентиляции.

•  Долговременные механизмы реализуются почками и печенью, буферами костной ткани, обкладочными клетками желудка.

Механизмы компенсации алкалоза обеспечивают: 1) снижение в плазме крови и в других биологических жидкостях концентрации HCO3 и 2) повышение pCO2 и, как следствие, – концентрации H2CO3. Однако, механизмы устранения алкалозов значительно менее эффективны, чем ацидозов.

•  Срочные механизмы устранения алкалоза.

♦ Клеточные механизмы компенсации. Наибольшее значение среди них имеет активация реакций метаболизма с образованием нелетучих органических кислот.

♦ Внеклеточные буферные системы не имеют существенного значения в устранении алкалоза.

♦ Снижение объёма альвеолярной вентиляции. В связи с этим повышается pCO2, концентрация угольной кислоты и образующегося при её диссоциации H+.

•  Долговременные механизмы компенсации алкалоза. Они реализуются при участии почек: в них происходит выведение из организма избытка HCO3.

Принципы устранения расстройств кислотно-щелочного равновесия

Лечебные мероприятия при коррекции нарушений КЩР базируются на этиотропном, патогенетическом и симптоматическом принципах.

Респираторный ацидоз

Главная цель: уменьшение степени или ликвидация дыхательной недостаточности.

•  Этиотропный принцип направлен на устранение причин ацидоза: гиповентиляции или гипоперфузии лёгких, а также сниженной диффузионной способности аэрогематического барьера. При острой дыхательной недостаточности эти мероприятия могут полностью ликвидировать ацидоз.

•  Патогенетическое лечение имеет целью устранение повышенного уровня CO2 в крови и других биологических жидкостях организма. Введение содержащих гидрокарбонат буферных растворов с целью устранения хронического респираторного ацидоза неэффективно. Это объясняется тем, что экзогенный HCO3 быстро удаляется из организма почками.

•  Симптоматическое лечение имеет целью устранение неприятных и тягостных ощущений, усугубляющих состояние пациента: головной боли, аритмий сердца, психомоторного перевозбуждения, избыточной потливости и других.

Респираторный алкалоз

Цель: устранение дефицита CO2 в организме.

•  Этиотропное лечение осуществляется путём ликвидации причины гипервентиляции лёгких.

•  Патогенетическое лечение направлено на нормализацию содержания углекислого газа в организме. С этой целью проводят ряд мероприятий.

♦ Дыхание газовыми смесями с повышенным парциальным содержанием CO2.

♦ Коррекция водно-электролитного обмена с помощью буферных растворов, состав которых зависит от конкретных расстройств обмена ионов и воды у данного пациента.

•  Симптоматический принцип направлен на устранение симптомов, отягощающих состояние пациента: судорог, сердечной недостаточности, артериальной гипотензии и других.

Негазовые ацидозы

Основная цель: уменьшение содержания в организме избытка кислот и восстановление нормального содержания HCO3.

•  Этиотропный принцип подразумевает ликвидацию причины развития негазового ацидоза.

•  Патогенетическое лечение направлено на нормализацию содержания в жидких средах организма HCO3.

•  Симптоматическое лечение направлено на ликвидацию головной боли, нарушений нервно-мышечной проводимости и мышечного тонуса, расстройств ритма сердца, функций ЖКТ и других симптомов.

Негазовые алкалозы

Главная цель: восстановление нормального уровня соединений с щелочными свойствами, прежде всего – гидрокарбонатов.

•  Этиотропный принцип предусматривает устранение причины, вызвавшей алкалоз.

•  Патогенетическое лечение направлено на блокаду ключевых звеньев патогенеза негазового алкалоза.

♦ Восстановление [H+] в организме.

♦ Устранение расстройств электролитного баланса и гиповолемии достигается парентеральным введением растворов, содержащих необходимые ионы: хлорида натрия, хлорида калия, солей кальция.

♦ Стимуляция выведения из организма избытка HCO3. С этой целью используют ингибиторы карбоангидразы (например, диакарб), которые увеличивают экскрецию гидрокарбоната почками. У пациентов с почечной недостаточностью применяют гемодиализ.

♦ Ликвидация дефицита в клетках АТФ, креатинфосфата и снижение степени нарушения их энергетического обеспечения.

•  Симптоматическое лечение направлено на устранение осложнений алкалоза и уменьшение симптоматики, усугубляющей состояние пациента.

ГЛАВА 14. НАРУШЕНИЯ ОБМЕНА ВИТАМИНОВ

Витамины – экзогенные низкомолекулярные БАВ, необходимые для оптимального обмена веществ и жизнедеятельности организма.

Источники витаминов. В отличие от других БАВ, синтез которых происходит в организме, большинство витаминов поступает в организм с пищей. Некоторые витамины синтезируются микроорганизмами в кишечнике, но в недостаточных количествах.

Виды витаминов. В настоящее время насчитывается 13 групп (или семейств) витаминов. Почти каждая группа состоит из нескольких витаминов, которые предложено называть витамерами (табл. 14-1).

Таблица 14-1. Группы витаминов

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A013,pic_0023.png,-1,,00000000,)Окончание табл. 14-1

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A013,pic_0024.png,-1,,00000000,)
По: The Vitamins. Fundamental Aspects in Nitrition and Health. Gerald F. Combs, Jr. Second edition. Academic Press, 1998.

Примечания: * провитамин – β-каротин; ** провитамин – криптоксантин; *** – полиглутамилфолацины.

Растворимость витаминов. По свойству растворимости витамины подразделяют на жирорастворимые (витамины A, D, E и K) и водорастворимые (все остальные).

Антивитамины

Антивитамины – химические вещества, препятствующие реализации биологических эффектов витаминов.

Большинство антивитаминов имеют химическую структуру, сходную с таковой витаминов (например, пиридоксин и его конкурентный антагонист – дезоксипиридоксин). К антивитаминам относят также некоторые соединения, не являющиеся структурными антагонистами витаминов (например, ферменты, разрушающие витамины).

Некоторые антагонисты витаминов применяют при лечении ряда инфекционных заболеваний. Так, структурный антагонист витамина B6 – изониазид известен как антимикобактериальное ЛС, применяемое при лечении туберкулёза.

ТИПОВЫЕ ФОРМЫ НАРУШЕНИЯ ОБМЕНА ВИТАМИНОВ

Основные формы нарушения обмена витаминов: авитаминозы, гиповитаминозы, гипервитаминозы и дисвитаминозы.

Авитаминозы

Авитаминозы – патологические состояния, развивающиеся вследствие отсутствия в организме витамина или невозможности реализации его эффектов.

Причины авитаминозов:

♦ Отсутствие витамина в пище.

♦ Нарушение всасывания витаминов в кишечнике.

♦ Нарушение транспорта витаминов в ткани и органы.

♦ Расстройства механизмов реализации эффектов витаминов (отсутствие или снижение чувствительности рецепторов к ним, дефицит субстратов, ферментов и других компонентов их эффекторного механизма).

Гиповитаминозы

Гиповитаминоз – патологическое состояние, возникающее в результате снижения содержания или недостаточности эффектов витамина в организме.

По происхождению выделяют экзогенные (первичные) и эндогенные (вторичные) гиповитаминозы.

Экзогенные гиповитаминозы развиваются вследствие недостаточного поступления в организм одного или, чаще, нескольких витаминов с пищей. Для экзогенных гиповитаминозов характерны сезонный характер и латентное течение.

• Эндогенные гиповитаминозы подразделяют на приобретённые, наследственные и врождённые. Причины приобретённых гиповитаминозов.

♦ Недостаточное содержание витаминов в пище.

♦ Нарушения пищеварения и всасывания витаминов в желудке и кишечнике.

♦ Повышенная потребность в витаминах при выполнении тяжёлых физических нагрузок или при некоторых заболеваниях (например, при тиреотоксикозе).

♦ Расстройство доставки витаминов к тканям и органам. Чаще всего это является результатом дефицита или дефекта структуры транспортных белков вследствие патологии печени (большинство этих белков синтезируют гепатоциты).

♦ Расстройства взаимодействия витамина или комплекса «транспортный белок-витамин» с соответствующими рецепторами клеток.

♦ Нарушения внутриклеточного метаболизма и реализации эффектов витаминов (например, трансформации витамина в кофермент или активную форму).

• Наследственные и врождённые формы гиповитаминозов чаще выявляют у детей. К настоящему времени описаны наследуемые и врождённые формы нарушения обмена всех жирорастворимых витаминов, а также витаминов B1, B2, B6, B12, фолиевой кислоты, ниацина и биотина.

Гипервитаминозы

Гипервитаминоз – патологическое состояние, развивающееся в результате повышенного содержания витамина в организме.

Причина: повышенное поступление витаминов в организм.

Наиболее тяжело протекают гипервитаминозы, вызываемые жирорастворимыми витаминами A и D. Из водорастворимых витаминов выраженные токсические эффекты оказывают витамин B1 и фолиевая кислота, вводимые в больших дозах.

Дисвитаминозы

Дисвитаминозы – патологические состояния, развивающиеся в результате гиповитаминоза одного либо нескольких витаминов в сочетании с гипервитаминозом другого либо совокупности других витаминов.

Причины дисвитаминозов:

♦ несбалансированное поступление витаминов в организм;

♦ необоснованный приём препаратов отдельных витаминов при коррекции гиповитаминозов.

НАРУШЕНИЯ ОБМЕНА ОТДЕЛЬНЫХ ВИТАМИНОВ

В настоящем разделе рассмотрены нарушения обмена веществ и функций организма при отдельных гипо- и гипервитаминозах.

Витамин A

Витамин А (ретинол, антиксерофтальмический фактор) поступает в организм с пищей, в том числе в форме его предшественника β-каротина. Из кишечника витамин A поступает в кровь, связывается с белком-переносчиком и транспортируется в печень для депонирования.

Гиповитаминоз A

Известны две разновидности гиповитаминоза A: наследственная и приобретённая.

Наследственная форма – редкое явление – характеризуется нарушением процессов пролиферации и дифференцировки клеток, а также их деструкцией.

Приобретённые формы гиповитаминоза А встречаются относительно часто.

•  Причины:

♦ Недостаточное содержание в продуктах питания витамина A и β-каротина.

♦ Нарушение их всасывания в ЖКТ (например, при недостатке жёлчных кислот).

♦ Нарушения транспорта витамина к клеткам.

•  Проявления:

♦ Гемералопия – сумеречная слепота.

♦ Метаплазия эпителия воздухоносных путей (однослойный цилиндрический эпителий местами становится многослойным плоским).

♦ Изменения эпидермиса (кожа становится сухой и шершавой; на разгибательных поверхностях преимущественно коленных и локтевых суставов появляется папулёзная сыпь, шелушение, избыточное ороговение эпителия).

♦ Ксерофтальмия (сухость роговицы вследствие снижения секреции слезных желёз).

♦ Снижение резистентности к микрофлоре, находящейся на слизистых оболочках, коже и роговой оболочке глаза; инфицирование и воспаление этих покровов.

♦ Гипохромная анемия.

Гипервитаминоз A

•  Причины

♦ Передозировка препаратов этого витамина.

♦ Избыточное употребление в пищу печени белого медведя, тюленя, кита, моржа, содержащей большое количество свободного витамина А.

•  Проявления гипервитаминоза А: торможение процессов остео- и хондрогенеза, деструкция хрящевой и костной ткани, остеопороз и кальцификация органов, торможение протеосинтеза.

Витамин D

Витамин D (холекальциферол и эргокальциферол, антирахитический витамин) совместно с ПТГ и кальцитонином регулирует уровень Ca2+

и фосфатов в плазме крови, а также – насыщение кальцием костей. Биологический эффект витамина D заключается в стимуляции всасывания Ca2+ и фосфатов в кишечнике и в почечных канальцах.

Гиповитаминоз D

•  Причины:

♦ Приобретённые формы гиповитаминоза D обусловлены недостаточным поступлением витамина в организм с пищей и его образованием в коже под действием солнечных лучей.

♦ Наследственные формы гиповитаминоза D обусловлены дефектами генов, кодирующих полипептиды, которые принимают участие в метаболизме витамина.

•  Проявления:

♦ Ослабление минерализации костной ткани (остеопороз) и частые переломы костей.

♦ Искривление рук, ног и позвоночника; деформация и размягчение плоских костей черепа.

♦ Мышечная гипотония развивается вследствие нарушения иннервации мышц и расстройств обменных процессов в них.

♦ У детей развивается рахит: происходит рассасывание элементов костной ткани и размягчение костей (остеомаляция), на границе кости и хряща образуются рахитические чётки.

Гипервитаминоз D

•  Причины:

♦ Острое или хроническое избыточное введение в организм препаратов витамина D.

♦ Генетически обусловленная повышенная чувствительность к витамину.

•  Проявления:

♦ Гиперкальциемия.

♦ Почечная недостаточность.

♦ Повышенное АД и сердечные аритмии.

♦ Сердечная недостаточность (является следствием кальцификации клапанов сердца и перегрузки миокарда).

♦ Изменения психоневрологического статуса циклического характера (вялость, угнетённость состояния, сонливость, которые сменяются периодами возбуждения и повышенной двигательной активности). Возможны также потеря сознания, кома и развитие гиперкальциемических клонико-тонических судорог.

Витамин E

Витамин Е (токоферол) выполняет роль антиоксиданта, тормозит СПОЛ, участвует в биосинтезе гема и белков, в тканевом дыхании. В умеренных дозах α-токоферол является иммуностимулятором, активирующим как гуморальный, так и клеточный иммунитет, что повышает резистентность организма к инфекции.

Гиповитаминоз Е

Первичный гиповитаминоз Е развивается у младенцев при искусственном вскармливании, а также у детей при недостатке белка в рационе. Вторичный гиповитаминоз Е встречается чаще.

•  Причины:

♦ Нарушения пищеварения (недостаточность поджелудочной железы, дефицит жёлчных кислот, заболевания тонкого кишечника).

♦ Нарушения транспорта витамина Е (дефект токоферол-связывающего белка, гипопротеинемия).

♦ Прочие причины: гельминтозы, лямблиоз, приём некоторых ЛС.

•  Проявления:

♦ Гемолиз эритроцитов с развитием гемолитической анемии.

♦ Креатинурия.

♦ Отложения сфинголипидов в мышцах.

♦ Демиелинизация аксонов нейронов центральной и периферической нервной системы обусловливает мозжечковую атаксию, периферические невропатии, нарушения проприоцептивной чувствительности.

Гипервитаминоз E. При ошибочном введении больших доз витамина Е (100 мг/кг/сут) у детей может развиться некротизирующий энтероколит и сепсис.

Витамин K

Витамин К участвует в синтезе ряда факторов свёртывания крови в печени: II (протромбин), VII (проконвертин), IX (фактор Кристмаса), X (фактор Стюарта-Прауэр).

Гиповитаминоз К

•  Причины

♦ Нарушение синтеза витамина К кишечной микрофлорой, например, при пероральном приёме антибиотиков и сульфаниламидов.

♦ Нарушение всасывания витамина К.

♦ Печёночная недостаточность.

♦ Приём антикоагулянтов непрямого действия.

♦ У новорождённых кишечник ещё не заселён микрофлорой, способной синтезировать витамин К в достаточном количестве.

Случаи дефицита витамина К вследствие недостаточного его поступления с пищей не описаны.

•  Проявления:

♦ Геморрагический синдром (носовые, желудочно-кишечные кровотечения, кровотечения из дёсен, внутрикожные и подкожные кровоизлияния).

♦ У новорождённых детей могут возникать внутричерепные кровоизлияния.

Гипервитаминоз K

Гипервитаминоз K развивается только у новорождённых и характеризуется развитием гемолитического синдрома.

•  Причины:

♦ Применение препаратов витамина К (например, фитоменадиона) у детей с недостаточностью глюкозо-6-фосфат дегидрогеназы.

♦ Передозировка препаратов витамина К.

•  Проявления: развитие гемолитической анемии, гипербилирубинемии и ядерной желтухи (особенно у недоношенных детей).

Витамин B1

Витамин B1 (тиамин) входит в состав многих ферментов, участвующих в углеводном обмене. При недостатке витамина В1 в крови увеличивается содержание пирувата и лактата. Повышенный уровень в крови витамина B1 не вызывает расстройств жизнедеятельности.

Гиповитаминоз В1

•  Причины:

♦ Первичный гиповитаминоз B1 возникает при недостатке этого витамина в пище.

♦ Вторичный гиповитаминоз B1 развивается при повышении потребности в витамине, нарушениях всасывания, гемодиализе, а также при употреблении больших доз алкоголя.

•  Проявления. При недостатке витамина B1 в организме возникает болезнь бери-бери. Выделяют несколько её форм:

♦ Сухая форма бери-бери (периферическая полиневропатия) – двустороннее симметричное поражение нервов преимущественно нижних конечностей, проявляющееся ощущением жжения в области стоп, особенно в ночное время. Характерны судороги в икроножных мышцах и боли в ногах, ощущение слабости, быстрая утомляемость при ходьбе, хромота.

♦ Церебральная форма бери-бери (синдром Вернике-Корсакова, геморрагический энцефалит). Основные признаки – нистагм, полная офтальмоплегия. Клиническая картина быстро прогрессирует с развитием комы и летальным исходом.

♦ Сердечно-сосудистая (влажная) форма бери-бери. Характеризуется развитием миокардиодистрофии и снижением ОПСС.

Основные клинические проявления у детей – сердечная недостаточность, афония и отсутствие глубоких сухожильных рефлексов. Возникает у грудных детей 2-4 мес, вскармливаемых матерями с дефицитом витамина В1.

Витамин B2

Витамин B2 (рибофлавин) участвует в окислительно-восстановительных процессах в виде коферментов дегидрогеназ и оксидаз, а также необходим для осуществления зрительной функции и синтеза Hb.

Гиповитаминоз B2

•  Причины:

♦ Первичный гиповитаминоз B2 развивается при недостатке витамина в пище или чрезмерном употреблении продуктов, содержащих белки животного происхождения.

♦ Вторичный гиповитаминоз B2 обусловлен нарушением всасывания в кишечнике или повышением потребности в витамине.

•  Проявления:

♦ Ангулярный хейлит – мацерация и бледность кожи в уголках рта, приводящие в дальнейшем к возникновению поверхностных трещин, иногда оставляющих после себя рубцы. При инфицировании трещин Candida albicans возникают заеды.

♦ Глоссит – язык приобретает ярко-красную окраску, его слизистая оболочка становится сухой.

♦ Поражение кожи – покраснение, шелушение, накопление в волосяных фолликулах секрета сальных желёз, что обусловливает себорею.

♦ На поздних стадиях присоединяются нарушения нервной системы: парестезии, повышение сухожильных рефлексов, атаксия.

♦ Гипохромная анемия.

Избыточное введение в организм витамина B2 не сопровождается признаками интоксикации.

Витамин B

Витамин B6 (адермин, пиридоксин) фосфорилируется в пиридоксаль-5- фосфат – кофермент, участвующий в азотистом и жировом обмене.

Гиповитаминоз Вс

•  Причины:

♦ Первичный гиповитаминоз В6 возникает только у детей, находящихся на искусственном вскармливании с недостаточным содержанием этого витамина.

♦ Вторичный гиповитаминоз В6 развивается при синдромах мальабсорбции, дисбактериозе кишечника; приёме некоторых ЛС, являющихся антивитаминами В6.

•  Проявления:

♦ Себорейный дерматоз лица, волосистой части головы, шеи.

♦ Стоматит, глоссит и хейлоз.

♦ Периферические полиневропатии – парестезии с постепенной утратой рефлексов.

♦ У грудных детей нередко наблюдаются судороги.

♦ Анемия – чаще всего нормобластная гипохромная, однако возможно возникновение и мегалобластной анемии.

♦ Лимфопения.

Гипервитаминоз B6

•  Причина: поступление чрезмерных доз витамина В6.

•  Проявления:

♦ Прогрессирующая атаксия.

♦ Потеря глубокой (проприоцептивной и вибрационной) чувствительности нижних конечностей. Болевая, температурная и тактильная чувствительность сохранены.

Витамин B12

Витамин B12 (кобаламин, антианемический витамин, внешний фактор Касла) в качестве кофермента участвует в ресинтезе метионина и образовании тетрагидрофолиевой кислоты.

Гиповитаминоз B12

•  Причины:

♦ Приобретённый гиповитаминоз B12 развивается при недостатке содержания витамина в пище или нарушении всасывания кобаламинов (вследствие отсутствия внутреннего фактора Касла или при патологии кишечника).

♦ Наследственная и врождённая формы гиповитаминоза B12 обусловлены врождённым дефицитом внутреннего фактора Касла или генетическим дефектом транскобаламинов I и II, обеспечивающих транспорт витамина B12.

•  Проявления:

♦ Мегалобластная анемия.

♦ Болезнь Аддисона-Бирмера (наблюдается при атрофии слизистой оболочки желудка и дефицита внутреннего фактора Касла).

♦ Развитие дегенеративных процессов в спинном мозге (фуникулярный миелоз). Сопровождаются парестезией, неустойчивой походкой, ослаблением рефлекторных реакций, появлением патологических рефлексов.

♦ Психические расстройства.

♦ Подавление активности иммунных реакций.

♦ Различные варианты метилмалонатацидемии.

Фолиевая кислота

Фолиевая кислота в виде тетрагидрофолата участвует в обмене нуклеиновых кислот и белка, регулирует синтез метионина, пуриновых и пиримидиновых соединений, трансформацию ряда аминокислот.

Гиповитаминоз фолиевой кислоты

•  Причины:

♦ Приобретённый гиповитаминоз фолиевой кислоты обусловлен недостатком её содержания в пище.

♦ Наследственные и врождённые формы гиповитаминоза фолиевой кислоты являются результатом нарушения генетической программы энтероцитов.

•  Проявления:

♦ Мегалобластная анемия. По клиническим, гематологическим и биохимическим характеристикам она сходна с анемией при дефиците витамина B12.

♦ Лейкопения и тромбоцитопения.

♦ Подавление активности иммунных реакций и снижение фагоцитарной активности гранулоцитов.

♦ Ослабление резистентности организма к возбудителям инфекции (преимущественно вирусной природы).

Гипервитаминоз фолиевой кислоты. Эффекты избыточного введения фолиевой кислоты изучены мало. Имеются лишь экспериментальные данные о развитии иммунодепрессии при введении избытка фолатов.

Биотин

Биотин входит в состав ряда ферментов, ответственных за включение CO2 в различные органические кислоты (реакции карбоксилирования).

Гиповитаминоз биотина

•  Причины:

♦ Потребление большого количества сырого яичного белка.

♦ Дисбактериоз кишечника.

•  Проявления: дерматиты, сочетающиеся с избыточной продукцией секрета сальных желёз кожи, выпадением волос, ломкостью ногтей; мышечные боли; анемии; психические расстройства.

Пантотеновая кислота

Пантотеновая кислота (витамин B5) в виде кофермента A участвует в реализации многих биохимических процессов: окисления и синтеза жирных кислот; окислительного декарбоксилирования α-кетокислот; цикла трикарбоновых кислот; синтеза нейтральных жиров, стероидных гормонов, фосфолипидов, ацетилхолина, гема и многих других.

Недостаток пантотеновой кислоты

•  Причина: недостаточное содержание витамина в пище.

Учитывая, что пантотеновая кислота содержится практически во всех пищевых продуктах в достаточных количествах, её дефицит у человека встречается весьма редко.

•  Проявления:

♦ Признаки поражения нервной системы (нарушения сна, повышенная утомляемость, головные боли, парестезии, невриты, параличи).

♦ Дегенеративные изменения в коре надпочечников с развитием гипокортицизма.

♦ Симптомы дисфункции всех органов и тканей с развитием дистрофических процессов в них.

Ниацин

Ниацин (витамин B3, витамин PP, никотиновая кислота, никотинамид) в виде коферментов НАД и НАДФ участвует в реакциях окисления аминокислот, углеводов, липидов.

Гиповитаминоз PP

•  Основная причина гиповитаминоза PP – значительный его дефицит в пище.

•  Проявления:

♦ Главный клинический симптом, развивающийся при дефиците никотиновой кислоты, – пеллагра (итал.pelle agra – шершавая кожа).

♦ Чувство жжения во рту (выявляется на начальном этапе гиповитаминоза).

♦ Изъязвления слизистой оболочка рта, стоматиты, гингивиты, поражения языка и желудка. На слизистой оболочке кишечника (особенно толстого) нередко выявляют эрозии и изъязвления.

♦ Признаки симметричного дерматита на коже, в местах, подверженных влиянию прямых солнечных лучей – обычно на конечностях, шее и лице.

♦ Шелушение кожи с последующим гиперкератозом и пигментацией в местах локализации эритемы.

♦ Нарушения психики проявляются в виде депрессии, галлюцинаций, психозов; в тяжёлых случаях возможна деменция – приоб- ретённое слабоумие.

В настоящее время «классическая» картина недостаточности никотиновой кислоты встречается редко. Обычно гиповитаминоз PP характеризуется стёртой малоспецифической картиной, клинически напоминающей пеллагру (болезнь Хартнапа). При ней выявлено нарушение синтеза никотиновой кислоты из триптофана.

Гипервитаминоз PP. Избыточный приём никотиновой кислоты (но не никотинамида) может сопровождаться неспецифической реакцией – гиперемией лица с ощущением жара. Иногда могут развиваться аллергические реакции.

ГЛАВА 15. ГИПОКСИЯ

ТЕРМИНОЛОГИЯ

Гипоксия – типовой патологический процесс, развивающийся в результате недостаточности биологического окисления. Приводит к нарушению энергетического обеспечения функций и пластических процессов в организме.

Гипоксия нередко сочетается с гипоксемией.

В эксперименте создают условия аноксии для отдельных органов, тканей, клеток или субклеточных структур, а также аноксемии в пределах небольших участков кровеносного русла (например, изолированного органа).

♦ Аноксия – прекращение процессов биологического окисления, как правило, при отсутствии кислорода в тканях.

♦ Аноксемия – отсутствие кислорода в крови.

В целостном живом организме формирование этих состояний невозможно.

КЛАССИФИКАЦИЯ

Гипоксии классифицируют с учётом этиологии, выраженности расстройств, скорости развития и длительности.

•  По этиологии выделяют две группы гипоксических состояний:

♦ экзогенные гипоксии (нормо- и гипобарическая);

♦ эндогенные гипоксии (тканевая, дыхательная, субстратная, сердечно-сосудистая, перегрузочная, кровяная).

•  По критерию выраженности расстройств жизнедеятельности различают лёгкую, среднюю (умеренную), тяжёлую и критическую (летальную) гипоксии.

•  По скорости возникновения и длительности выделяют несколько разновидностей гипоксии:

♦ Молниеносную (острейшую) гипоксию. Развивается в течение нескольких секунд (например, при разгерметизации летательных аппаратов на высоте более 9 000 м или в результате быстрой массивной потери крови).

♦ Острую гипоксию. Развивается в течение первого часа после воздействия причины гипоксии (например, в результате острой кровопотери или острой дыхательной недостаточности).

♦ Подострую гипоксию. Формируется в течение одних суток (например, при попадании в организм нитратов, окислов азота, бензола).

♦ Хроническую гипоксию. Развивается и длится более чем несколько суток (недели, месяцы, годы), например, при хронической анемии, сердечной или дыхательной недостаточности.

ЭТИОЛОГИЯ И ПАТОГЕНЕЗ ГИПОКСИИ Экзогенный тип гипоксии

Этиология

Причина экзогенных гипоксий – недостаточное поступление кислорода с вдыхаемым воздухом.

•  Нормобарическая экзогенная гипоксия. Вызвана ограничением поступления в организм кислорода с воздухом в условиях нормального барометрического давления при:

♦ Нахождении людей в небольшом и недостаточно вентилируемом пространстве (например, в шахте, колодце, лифте).

♦ При нарушениях регенерации воздуха или подачи кислородной смеси для дыхания в летательных и глубинных аппаратах, автономных костюмах (космонавтов, лётчиков, водолазов, спасателей, пожарников).

♦ При несоблюдении методики ИВЛ.

•  Гипобарическая экзогенная гипоксия. Вызвана снижением барометрического давления при подъёме на высоту (более 3000-3500 м, где pO2 воздуха ниже 100 мм рт.ст.) или в барокамере. В этих условиях возможно развитие либо горной, либо высотной, либо декомпрессионной болезни.

♦ Горная болезнь возникает при подъёме в горы, где организм подвергается постепенному уменьшению барометрического давления и pO2 во вдыхаемом воздухе, а также охлаждению и повышенной инсоляции.

♦ Высотная болезнь развивается у людей, поднятых на большую высоту в открытых летательных аппаратах, а также при снижении давления в барокамере. В этих случаях на организм действует относительно быстрое снижение барометрического давления и pOво вдыхаемом воздухе.

♦ Декомпрессионная болезнь наблюдается при резком снижении барометрического давления (например, в результате разгерметизации летательных аппаратов на высоте более 9 000 м).

Патогенез экзогенных гипоксий

К основным звеньям патогенеза экзогенной гипоксии (независимо от её причины) относятся: артериальная гипоксемия, гипокапния, газовый алкалоз и артериальная гипотензия.

♦ Артериальная гипоксемия – инициальное и главное звено экзогенной гипоксии. Гипоксемия ведёт к уменьшению поступления кислорода к тканям, что снижает интенсивность биологического окисления.

♦ Снижение напряжения в крови углекислого газа (гипокапния) возникает в результате компенсаторной гипервентиляции лёгких (в связи с гипоксемией).

♦ Газовый алкалоз является результатом гипокапнии.

♦ Снижение системного АД (артериальная гипотензия), сочетающееся с гипоперфузией тканей в значительной мере являются следствием гипокапнии. Выраженное снижение раС02 является сигналом к сужению просвета артериол мозга и сердца.

Эндогенные типы гипоксии

Эндогенные типы гипоксии являются результатом многих патологических процессов и болезней, а также могут развиться при значительном увеличении потребности организма в энергии.

Дыхательный тип гипоксии

•  Причина – дыхательная недостаточность (недостаточность газообмена в лёгких, подробно описана в главе 23) может быть обусловлена:

♦ альвеолярной гиповентиляцией;

♦ сниженной перфузией кровью лёгких;

♦ нарушением диффузии кислорода через аэрогематический барьер;

♦ диссоциацией вентиляционно-перфузионного соотношения.

•  Патогенез. Инициальным патогенетическим звеном является артериальная гипоксемия, обычно сочетающаяся с гиперкапнией и ацидозом.

•  Изменения газового состава и pH крови: снижаются pa02, pH, Sa02, pv02, Sv02, повышается paC02.

Циркуляторный (гемодинамический) тип гипоксии

•  Причина – недостаточность кровоснабжения тканей и органов. Выделяют несколько факторов, приводящих к недостаточности кровоснабжения:

♦ Гиповолемия.

♦ Уменьшение МОК при сердечной недостаточности (см. главу 22), а также при снижении тонуса стенок сосудов (как артериальных, так и венозных).

♦ Расстройства микроциркуляции (см. главу 22).

♦ Нарушение диффузии кислорода через стенку сосудов (например, при воспалении сосудистой стенки – васкулите).

•  Патогенез. Инициальным патогенетическим звеном является нарушение транспорта насыщенной кислородом артериальной крови к тканям.

•  Виды циркуляторной гипоксии. Выделяют локальную и системную формы циркуляторной гипоксии.

♦ Локальная гипоксия обусловлена местными расстройствами кровообращения и диффузии кислорода из крови в ткани.

♦ Системная гипоксия развивается вследствие гиповолемии, сердечной недостаточности и снижении ОПСС.

•  Изменения газового состава и pH крови: снижаются pH, pv02, Sv02, повышается показатель артерио-венозной разницы по кислороду.

Гемический (кровяной) тип гипоксии

•  Причина – снижение эффективной кислородной ёмкости крови и, следовательно, её транспортирующей кислород функции вследствие:

♦ Выраженной анемии, сопровождающейся снижением содержания Hb менее 60 г/л (см. главу 22).

♦ Нарушения транспортных свойств Hb (гемоглобинопатии). Оно обусловлено изменением его способности к оксигенации в капиллярах альвеол и дезоксигенации в капиллярах тканей. Эти изменения могут быть наследственными или приобретёнными.

❖ Наследственные гемоглобинопатии обусловлены мутациями генов, кодирующих аминокислотный состав глобинов.

❖ Приобретённые гемоглобинопатии чаще всего являются следствием воздействия на нормальный Hb окиси углерода, бензола или нитратов.

•  Патогенез. Инициальным патогенетическим звеном является неспособность Hb эритроцитов связывать кислород в капиллярах лёгких, транспортировать и отдавать оптимальное количество его в тканях.

•  Изменения газового состава и pH крови: снижаются V02, pH, pv02, повышается показатель артерио-венозной разницы по кислороду и снижается Va02 при норме pa02.

Тканевой тип гипоксии

•  Причины – факторы, снижающие эффективность утилизации кислорода клетками или сопряжения окисления и фосфорилирования:

♦ Ионы циана (CN), специфически ингибирующие ферменты, и ионы металлов (Ag2+, Hg2+, Cu2+), ведущие к ингибированию ферментов биологического окисления.

♦ Изменения физико-химических параметров в тканях (температуры, электролитного состава, pH, фазового состояния мембранных компонентов) в более или менее выраженной мере снижают эффективность биологического окисления.

♦ Голодание (особенно белковое), гипо- и дисвитаминозы, нарушения обмена некоторых минеральных веществ приводят к уменьшению синтеза ферментов биологического окисления.

♦ Разобщение процессов окисления и фосфорилирования, вызываемое многими эндогенными агентами (например, избытком Ca2+, H+, ВЖК, йодсодержащих гормонов щитовидной железы), а также экзогенными веществами (2,4-динитрофенолом, грамицидином и некоторыми другими).

•  Патогенез. Инициальным звеном патогенеза является неспособность систем биологического окисления утилизировать кислород с образованием макроэргических соединений.

•  Изменения газового состава и pH крови: снижаются показатели pH и артерио-венозной разницы по кислороду, повышаются показатели SvO2, pvO2, VvO2.

Субстратный тип гипоксии

•  Причина – дефицит в клетках субстратов биологического окисления в условиях нормальной доставки кислорода к тканям. В клинической практике наиболее часто вызывается недостатком глюкозы в клетках при сахарном диабете.

•  Патогенез. Инициальным звеном патогенеза является торможение биологического окисления вследствие отсутствия необходимых субстратов.

•  Изменения газового состава и pH крови: снижаются показатели pH и артерио-венозной разницы по кислороду, повышаются SvO2, pvO2,

VvO2.

Перегрузочный тип гипоксии

•  Причина – значительная гиперфункция тканей, органов или их систем. Наиболее часто наблюдается при интенсивном функционировании скелетных мышц и миокарда.

•  Патогенез. Чрезмерная нагрузка на мышцу (скелетную или сердца) обусловливает относительную (по сравнению с требуемым при данном уровне функции) недостаточность кровоснабжения мышцы и дефицит кислорода в миоцитах.

•  Изменения газового состава и pH крови: снижаются показатели pH, SvO2, pvO2, повышаются показатели артерио-венозной разницы по кислороду и pvCO2.

Смешанный тип гипоксии

Смешанный тип гипоксии – результат сочетания нескольких разновидностей гипоксии.

•  Причина – факторы, нарушающие два и более механизмов доставки и использования кислорода и субстратов метаболизма в процессе биологического окисления.

♦ Наркотические вещества в высоких дозах способны угнетать функцию сердца, нейронов дыхательного центра и активность ферментов тканевого дыхания. В результате развиваются гемодинамический, дыхательный и тканевой типы гипоксии.

♦ Острая массивная кровопотеря приводит как к снижению кислородной ёмкости крови (в связи с уменьшением содержания Hb), так и к расстройству кровообращения: развивается гемический и гемодинамический типы гипоксии.

♦ При тяжёлой гипоксии любого происхождения нарушаются механизмы транспорта кислорода и субстратов метаболизма, а также интенсивность процессов биологического окисления.

•  Патогенез гипоксии смешанного типа включает звенья механизмов развития разных типов гипоксии. Смешанная гипоксия часто характеризуется взаимопотенцированием отдельных её типов с развитием тяжёлых экстремальных и даже терминальных состояний.

•  Изменения газового состава и pH крови при смешанной гипоксии определяются доминирующими расстройствами механизмов транспорта и утилизации кислорода, субстратов обмена веществ, а также процессов биологического окисления в разных тканях. Характер изменений при этом может быть разным и весьма динамичным.

АДАПТАЦИЯ ОРГАНИЗМА К ГИПОКСИИ

В условиях гипоксии в организме формируется динамичная функциональная система по достижению и поддержанию оптимального уровня биологического окисления в клетках.

Выделяют экстренные и долговременные механизмы адаптации к гипоксии.

Экстренная адаптация

Причина активации механизмов срочной адаптации: недостаточное содержание АТФ в тканях.

Механизмы. Процесс экстренной адаптации организма к гипоксии обеспечивают активацию механизмов транспорта O2 и субстратов обмена веществ к клеткам. Эти механизмы предсуществуют в каждом организме и активируются сразу при возникновении гипоксии.

•  Система внешнего дыхания

♦ Эффект: увеличение объёма альвеолярной вентиляции.

♦ Механизмы эффекта: увеличение частоты и глубины дыхания, числа функционирующих альвеол.

•  Сердце

♦ Эффект: повышение сердечного выброса.

♦ Механизм эффекта: увеличение ударного объёма и частоты сокращений.

•  Сосудистая система

♦ Эффект: перераспределение кровотока – его централизация.

♦ Механизм эффекта: региональное изменение диаметра сосудов (увеличение в мозге и сердце).

•  Система крови

♦ Эффект: увеличение кислородной ёмкости крови.

♦ Механизмы эффекта: выброс эритроцитов из депо, увеличение степени насыщения Hb кислородом в лёгких и диссоциации оксигемоглобина в тканях.

•  Система биологического окисления

♦ Эффект: повышение эффективности биологического окисления.

♦ Механизмы эффекта: активация ферментов тканевого дыхания и гликолиза, повышение сопряжённости окисления и фосфорилирования.

Долговременная адаптация

Причина включения механизмов долговременной адаптации к гипоксии: повторная или продолжающаяся недостаточность биологического окисления.

Механизмы. Долговременная адаптация к гипоксии реализуется на всех уровнях жизнедеятельности: от организма в целом до клеточного метаболизма. Эти механизмы формируются постепенно, обеспечивая оптимальную жизнедеятельность в новых, часто экстремальных условиях существования.

Основным звеном долговременной адаптации к гипоксии является повышение эффективности процессов биологического окисления в клетках.

•  Система биологического окисления

♦ Эффект: активация биологического окисления, что имеет ведущее значение в долговременной адаптации к гипоксии.

♦ Механизмы: увеличение количества митохондрий, их крист и ферментов в них, повышение сопряжённости окисления и фосфорилирования.

•  Система внешнего дыхания

♦ Эффект: увеличение степени оксигенации крови в лёгких.

♦ Механизмы: гипертрофия лёгких с увеличением числа альвеол и капилляров в них.

•  Сердце

♦ Эффект: повышение сердечного выброса.

♦ Механизмы: гипертрофия миокарда, увеличение в нём числа капилляров и митохондрий в кардиомиоцитах, возрастание скорости взаимодействия актина и миозина, повышение эффективности систем регуляции сердца.

•  Сосудистая система

♦ Эффект: возрастание уровня перфузии тканей кровью.

♦ Механизмы: увеличение количества функционирующих капилляров, развитие артериальной гиперемии в испытывающих гипоксию органах и тканях.

•  Система крови

♦ Эффект: увеличение кислородной ёмкости крови.

♦ Механизмы: активация эритропоэза, увеличение элиминации эритроцитов из костного мозга, повышение степени насыщения Hb кислородом в лёгких и диссоциации оксигемоглобина в тканях.

•  Органы и ткани

♦ Эффект: повышение экономичности функционирования.

♦ Механизмы: переход на оптимальный уровень функционирования, повышение эффективности метаболизма.

•  Системы регуляции

♦ Эффект: возрастание эффективности и надёжности механизмов регуляции.

♦ Механизмы: повышение резистентности нейронов к гипоксии, снижение степени активации симпатико-адреналовой и гипоталамо-гипофизарно-надпочечниковой систем.

ПРОЯВЛЕНИЯ ГИПОКСИИ

Изменения жизнедеятельности организма зависят от типа гипоксии, её степени, скорости развития, а также от состояния реактивности организма.

•  Острейшая (молниеносная) тяжёлая гипоксия приводит к быстрой потере сознания, подавлению функций организма и его гибели.

•  Хроническая (постоянная или прерывистая) гипоксия сопровождается, как правило, адаптацией организма к гипоксии.

РАССТРОЙСТВА ОБМЕНА ВЕЩЕСТВ

Расстройства обмена веществ являются одним из ранних проявлений гипоксии.

♦ Содержание АТФ и креатинфосфата при гипоксии любого типа прогрессирующе снижаются вследствие подавления аэробного окисления и сопряжения его с фосфорилированием.

♦ Концентрация неорганического фосфата в тканях увеличивается в результате повышенного гидролиза АТФ, АДФ, АМФ и КФ, подавления реакций окислительного фосфорилирования.

♦ Гликолиз на начальном этапе гипоксии активируется, что сопровождается накоплением кислых метаболитов и развитием ацидоза.

♦ Синтетические процессы в клетках угнетаются вследствие дефицита энергии.

♦ Протеолиз нарастает вследствие активации, в условиях ацидоза, протеаз, а также – неферментного гидролиза белков. Азотистый баланс становится отрицательным.

♦ Липолиз активируется в результате повышения активности липаз и ацидоза, что сопровождается накоплением избытка КТ и ВЖК. Последние оказывают разобщающее влияние на процессы окисления и фосфорилирования, чем усугубляют гипоксию.

♦ Водно-электролитный баланс нарушен в связи с подавлением активности АТФаз, повреждением мембран и ионных каналов, а также изменением содержания в организме ряда гормонов (минералокортикоидов, кальцитонина и др.).

НАРУШЕНИЯ ФУНКЦИЙ ОРГАНОВ И ТКАНЕЙ

При гипоксии нарушения функций органов и тканей выражены в разной мере, что определяется различной их резистентностью к гипоксии. Наименьшей устойчивостью к гипоксии обладает ткань нервной системы, особенно нейроны коры больших полушарий. При прогрессировании гипоксии и её декомпенсации угнетается функционирование всех органов и их систем.

Нарушения ВНД в условиях гипоксии выявляются уже через несколько секунд. Это проявляется:

♦ снижением способности адекватно оценивать происходящие события и окружающую обстановку;

♦ ощущениями дискомфорта, тяжести в голове, головной боли;

♦ дискоординацией движений;

♦ замедлением логического мышления и принятия решений (в том числе простых);

♦ расстройством сознания и его потерей в тяжёлых случаях;

♦ нарушением бульбарных функций, что приводит к расстройствам функций сердца и дыхания и может послужить причиной летального исхода.

Сердечно-сосудистая система

♦ Снижение сократительной функции миокарда и уменьшение, в связи с этим, ударного и сердечного выбросов.

♦ Расстройство кровотока в сосудах сердца с развитием коронарной недостаточности.

♦ Нарушения ритма сердца, включая мерцание и фибрилляцию предсердий и желудочков.

♦ Развитие гипертензивных реакций (за исключением отдельных разновидностей гипоксии циркуляторного типа), сменяющиеся артериальной гипотензией, в том числе – острой (коллапсом).

♦ Расстройства микроциркуляции, проявляющиеся чрезмерным замедлением тока крови в капиллярах, турбулентным его характером и артериолярно-венулярным шунтированием.

Система внешнего дыхания

♦ Увеличение объёма альвеолярной вентиляции на начальном этапе гипоксии с последующим (при нарастании степени гипоксии и повреждении бульбарных центров) прогрессирующим снижением по мере развития дыхательной недостаточности.

♦ Уменьшение общей и регионарной перфузии ткани лёгких вследствие нарушений кровообращения.

♦ Снижение диффузии газов через аэрогематический барьер (в связи с развитием отёка и набуханием клеток межальвеолярной перегородки).

Система пищеварения

♦ Расстройства аппетита (как правило, его снижение).

♦ Нарушение моторики желудка и кишечника (обычно – снижение перистальтики, тонуса и замедление эвакуации содержимого).

♦ Развитие эрозий и язв (особенно при длительной тяжёлой гипоксии).

ПРИНЦИПЫ УСТРАНЕНИЯ ГИПОКСИИ

• Коррекция гипоксических состояний базируется на этиотропном, патогенетическом и симптоматическом принципах. Этиотропное лечение направлено на устранение причины гипоксии. При гипоксии экзогенного типа необходимо нормализовать содержание кислорода во вдыхаемом воздухе.

♦ Гипобарическую гипоксию устраняют путём восстановления нормального барометрического и, как следствие, парциального давления кислорода в воздухе.

♦ Нормобарическую гипоксию предотвращают посредством интенсивного проветривания помещения или подачи в него воздуха с нормальным содержанием кислорода.

• Эндогенные типы гипоксии устраняют путём лечения заболевания

или патологического процесса, приведшего к гипоксии. Патогенетический принцип обеспечивает устранение ключевых звеньев и разрыв цепи патогенеза гипоксического состояния. Патогенетическое лечение включает следующие мероприятия:

♦ Ликвидацию или снижение степени ацидоза в организме.

♦ Уменьшение выраженности дисбаланса ионов в клетках, межклеточной жидкости, крови.

♦ Предотвращение или снижение степени повреждения ферментов и клеточных мембран.

♦ Снижение расхода энергии макроэргических соединений за счёт ограничения функционирования организма.

Симптоматическое лечение имеет целью ликвидацию усугубляющих состояние пациента ощущений и осложнений гипоксии. Для этого применяют анестетики, анальгетики, транквилизаторы, кардио- и вазотропные ЛС.

ГЛАВА 16. ИММУНОПАТОЛОГИЧЕСКИЕ СОСТОЯНИЯ

В организме человека постоянно происходят мутации. Их суммарное количество в расчёте на один клеточный цикл составляет примерно 1х106. Часть мутаций сопровождается синтезом новых белков, обладающих антигенными свойствами. Кроме того, организм постоянно подвергается атаке вирусов, бактерий, риккетсий, грибов, паразитов, способных вызвать различные болезни. В связи с этим в ходе эволюции сформировалась высокоэффективная система клеточных и неклеточных факторов распознавания собственных и чужеродных структур – система иммунобиологического надзора (ИБН).

СИСТЕМА ИММУНОБИОЛОГИЧЕСКОГО НАДЗОРА

Биологическая роль системы ИБН заключается в контроле за индивидуальным и однородным клеточно-молекулярным составом организма. Система ИБН включает в себя иммунную систему и комплекс факторов неспецифической защиты.

Обнаружение носителя чужеродной генетической или антигенной информации (молекул, вирусов, клеток или их фрагментов) сопровождается его инактивацией, деструкцией и, как правило, элиминацией. При этом клетки иммунной системы способны сохранять «память» о данном агенте, и при повторном контакте эффективность ответа системы ИБН повышается.

Антигены

Инициальным звеном процесса формирования иммунного ответа является распознавание чужеродного агента – антигена (Аг).

Антиген – вещество экзоили эндогенного происхождения, способное вызывать иммунные реакции.

Учитывая способность Аг вызывать толерантность, иммунный или аллергический ответ антигены называют ещё толерогенами, иммуногенами или аллергенами соответственно.

Иммунитет

В иммунологии термин «иммунитет» применяют в трёх значениях.

•  Для обозначения состояния невосприимчивости организма к воздействию носителя Аг.

•  Для обозначения реакций иммунной системы в ответ на действие Аг.

•  Для обозначения физиологической формы иммуногенной реактивности организма на Аг.

Иммунная система

Иммунная система – комплекс органов и тканей, содержащих иммунокомпетентные клетки и обеспечивающих антигенную индивидуальность и однородность организма.

Иммунная система состоит из центральных и периферических органов.

•  К центральным (первичным) органам относят костный мозг и вилочковую железу. В них происходит антигеннезависимое деление и созревание лимфоцитов, которые впоследствии мигрируют в периферические органы иммунной системы.

•  К периферическим (вторичным) органам относят селезёнку, лимфатические узлы, миндалины, лимфоидные элементы ряда слизистых оболочек. В этих органах происходит антигензависимая пролиферация и дифференцировка лимфоцитов.

Иммунокомпетентные клетки

К иммунокомпетентным клеткам относятся T- и B-лимфоциты, а также антигенпредставляющие (антигенпрезентирующие) клетки.

B-лимфоциты

B-лимфоциты проходят антигеннезависимую пролиферацию и дифференцировку в костном мозге, а затем мигрируют в тимус-независимые зоны периферических лимфоидных органов. B-лимфоциты составляют эффекторное звено гуморального иммунного ответа. Зрелые B-лимфоциты (плазматические клетки) вырабатывают АТ – Ig всех известных классов. CD19, CD20 и CD22 – основные маркёры, используемые для идентификации B-клеток.

T-лимфоциты

Антигеннезависимая пролиферация и дифференцировка T-лимфоци- тов происходит под контролем вилочковой железы.

T-лимфоциты узнают Аг, предварительно процессированный и представленный на поверхности антигенпредставляющих клеток. T-лимфо- циты ответственны за клеточный иммунный ответ, а такжеза регуляцию ответа на Аг стимул B-лимфоцитов при гуморальном иммунном ответе. T-клетки состоят из функциональных подтипов CD4+ и CD8+.

 T-хелперы (TH) – CD4+ T-клетки. При активации синтезируют и секретируют цитокины (ИЛ2, ИЛ4, ИЛ5, ИЛ6, γ-ИФН). В ходе иммунного ответа узнают молекулы MHC класса II.

 Цитотоксические T-лимфоциты (TC) – CD8+ T-клетки, уничтожают инфицированные вирусом, опухолевые и чужеродные клетки. Взаимодействуют с молекулой MHC класса I.

 T-супрессоры (TS) – представители CD8+ T-клеток – регулируют интенсивность иммунного ответа, подавляя активность TH клеток. Защищают организм от нежелательных последствий иммунной реакции, от чрезмерного воспаления и аутоагрессии.

NK-клетки (MHC-нерестригированные киллеры, естественные киллеры) составляют до 15% всех лимфоцитов крови. Они не имеют поверхностных детерминант, характерных для T- и B-лимфоцитов. В типичных NK-клетках экспрессируются дифференцировочные Аг CD2, CD7, CD56 и CD16, а при активации появляется гликопротеин CD69. NK-клетки распознают и уничтожают опухолевые и вирус-инфицированные клетки.

Антигенпредставляющие клетки присутствуют преимущественно в коже, лимфатических узлах, селезёнке и тимусе. К ним относятся макрофаги, дендритные клетки, фолликулярные отростчатые клетки лимфоузлов и селезёнки, клетки Лангерханса, М-клетки в лимфатических фолликулах пищеварительного тракта, эпителиальные клетки вилочковой железы. Эти клетки захватывают, перерабатывают и (в отличие от «обычных» фагоцитов) представляют Аг (эпитоп) на своей поверхности другим иммунокомпетентным клеткам, вырабатывают ИЛ1 и другие цитокины, а также секретируют ПгБ2, угнетающий иммунный ответ.

Взаимодействие клеток при иммунном ответе

Иммунный ответ возможен в результате активации клонов лимфоцитов и состоит из двух фаз. В первой фазе Аг активирует те лимфоциты, которые его распознают. Во второй (эффекторной) фазе эти лимфоциты координируют иммунный ответ, направленный на устранение Аг. Гуморальный иммунный ответ. В гуморальном иммунном ответе эффекторными клетками являются антигенпредставляющие клетки и B-лим- фоциты. Регуляцию антителообразования осуществляют T-хелперы и T-супрессоры.

Клеточный иммунный ответ. В клеточном иммунном ответе эффекторными клетками являются антигенпредставляющие клетки и цитотоксические T-лимфоциты, активность которых регулируют T-хелперы и T-супрессоры.

Неспецифическая защита организма

Помимо иммунокомпетентных клеток, в реакциях обнаружения и устранения чужеродных структур участвуют неспецифические клеточные и гуморальные факторы.

Механические барьеры

Кожные покровы защищены многослойным эпителием, который механически препятствует проникновению чужеродных агентов и устраняет их с поверхности за счёт постоянного слущивания отмерших слоёв эпидермиса. Эта «линия обороны» подкреплена бактерицидными веществами секретов кожных желёз и мощной системой иммунной защиты кожи (лимфоциты, клетки системы мононуклеарных фагоцитов). Слизистые оболочки могут иметь специальные анатомические структуры (например, реснички в мерцательном эпителии трахеи). Погружённые в слизь реснички формируют волны однонаправленных колебаний и перемещают слизь с заключёнными в ней частицами к выходу из дыхательных путей (процесс мукоцилиарного транспорта). Физико-химические факторы. Слизистые оболочки имеют множество защитных факторов – от кислых значений pH желудка до секреции ферментов и АТ.

 Слизь. Слизистые оболочки покрыты слоем слизи – организованной гелеобразной гликопротеиновой структуры, задерживающей и фиксирующей различные объекты, в том числе микроорганизмы.

 Лизоцим. В слизи содержится лизоцим – фермент, лизирующий клеточные стенки преимущественно грамположительных бактерий. Лизоцим присутствует и в других жидкостях организма (например, в слюне, слёзной жидкости).

 Сурфактант. В нижних участках воздухоносных путей и дыхательном отделе лёгкого слизи нет, но поверхность эпителия покрыта слоем сурфактанта – поверхностно-активного вещества, способного фиксировать и уничтожать грамположительные бактерии.

 Иммуноглобулины. На поверхность эпителия ЖКТ и респираторного тракта постоянно выделяются молекулы секреторного IgA.

Воспаление способствует элиминации чужеродных агентов за счёт образования экссудата и выхода форменных элементов крови в ткань, фагоцитоза и снижения pH (см. главу 5 «Воспаление»).

Система комплемента – группа из 26 сывороточных белков, опосредующих воспалительные реакции при участии гранулоцитов и макрофагов. Основные функции компонентов комплемента в защитных реакциях – стимуляция фагоцитоза, нарушение целостности клеточных стенок микроорганизмов и индукция синтеза медиаторов воспалительного ответа (например, ИЛ1). Кроме того, система комплемента стимулирует воспалительные реакции, участвует в развитии иммунных и анафилактических реакций.

Фагоциты выполняют не только защитные (поглощают и разрушают чужеродные агенты), но и дренажные функции (удаляют погибшие и деградировавшие структуры организма), а также являются антигенпрезентирующими клетками. Фагоциты представлены клетками миелопоэтического ряда и макрофагально-моноцитарной системы (см. статью «Фагоцитоз» главы 5).

Интерфероны (ИФН) выполняют антивирусную, противоопухолевую, иммуномодулирующую и радиопротективную функции. Блокада репродуктивных процессов при проникновении вируса в клетку обусловлена угнетением трансляции вирусной мРНК. При этом противовирусный эффект ИФН не обладает вирусоспецифичностью. Различают три ИФН:

♦ α-ИФН синтезируют лейкоциты периферической крови (ранее был известен как лейкоцитарный ИФН);

♦ β-ИФН синтезируют фибробласты (ранее был известен как фибробластный ИФН);

♦ γ-ИФН – продукт стимулированных T-лимфоцитов, NK-клеток и макрофагов (ранее был известен как иммунный ИФН).

Естественные АТ («антигеннезависимые», «неспецифические» АТ) составляют до 7% общего количества иммуноглобулинов в сыворотке крови неиммунизированных людей и животных. Их происхождение связывают с ответом иммунной системы на Аг нормальной микрофлоры. В эту же группу входят АТ, длительно циркулирующие после выздоровления от инфекционного заболевания. Часть пула подобных АТ синтезируется параллельно с образованием специфических АТ. Эти АТ низкоспецифичны,но способны перекрёстно реагировать с широким спектром Аг.

Естественные киллеры. Помимо фагоцитирующих клеток, важную роль в быстром реагировании организма на чужеродные Аг играют естественные киллеры (NK-клетки). Эту популяцию составляютбольшие зернистые лимфоциты, элиминирующие опухолевые клетки, а также клетки, инфицированные вирусами, бактериями и простейшими.

ИММУНОПАТОЛОГИЧЕСКИЕ СОСТОЯНИЯ И РЕАКЦИИ

Расстройства механизмов контроля со стороны системы ИБН за индивидуальным и однородным антигенным составом организма проявляются разнообразными иммунопатологическими состояниями и реакциями. Иммунодефицитные состояния, аллергические реакции, болезни и состояния иммунной аутоагрессии, патологическая толерантность, реакции «трансплантат против хозяина» являются следствием дефекта или нарушения деятельности одного или нескольких звеньев системы ИБН, обеспечивающих в норме эффективный иммунный ответ.

ЭТИОЛОГИЯ

Иммунопатологические состояния могут быть первичными или вторичными.

•  Причина первичных нарушений – наследственный или врождённый дефект генетической программы иммунокомпетентных клеток, а также клеток, обеспечивающих неспецифическую защиту организма.

•  Причиной вторичных нарушений являются расстройства, возникающие после рождения на разных этапах онтогенеза индивида. Они развиваются в результате повреждения клеток системы ИБН под влиянием факторов физической, химической или биологической природы.

ПАТОГЕНЕЗ

Патогенез иммунопатологических состояний сложен и имеет несколько вариантов развития.

•  Гипорегенераторный. Этот механизм (например, иммунодефицита и патологической толерантности) заключается в торможении пролиферации стволовых гемопоэтических или других пролиферирующих предшественников клеток иммунной системы.

•  Дисрегуляторный. Данный механизм обусловлен расстройствами дифференцировки антигенпредставляющих клеток, T- или B-лим- фоцитов, а также кооперации этих клеток. Причины:

♦ изменение соотношения количества или эффектов разных категорий иммунокомпетентных клеток (например, увеличение числа супрессоров или уменьшение количества хелперов и индукторов);

♦ нарушение содержания БАВ, а также числа или чувствительности рецепторов к ним на мембранах иммуноцитов.

•  Деструктивный (цитолитический) механизм обусловлен разрушением иммуноцитов. Причины:

♦ дефект самих иммуных клеток;

♦ действие на иммунокомпетентные клетки цитолитических агентов (например, АТ, мембраноатакующего комплекса комплемента, больших доз цитостатиков, глюкокортикоидов и др.).

Иммунодефициты и иммунодефицитные состояния

В основе развития иммунодефицитных состояний и иммунодефицитов, как правило, лежит недостаток (или отсутствие) клеток иммунной системы или расстройства их функций.

Иммунодефицитные состояния и иммунодефициты – типовые формы патологии системы ИБН, обусловленные снижением эффективности или неспособностью иммунной системы разрушать и элиминировать чужеродные Аг.

Виды

•  Первичные иммунодефициты: результат наследуемых и врождённых (генетических) дефектов иммунной системы.

•  Вторичные иммунодефициты, или иммунодефицитные состояния: следствие эндо- и экзогенных воздействий на нормальную иммунную систему.

•  Избирательные – вызваны селективным поражением отдельных популяций иммунокомпетентных клеток.

•  Неспецифические – дефекты механизмов неспецифической резистентности организма.

•  Комбинированные – сочетанное поражение клеточных и гуморальных механизмов иммунитета (например, B- и T-лимфоцитов).

В зависимости от преобладания дефекта иммуноцитов того или иного класса, иммунодефициты и иммунодефицитные состояния подразделяют на B-, T-, A-зависимые (относящиеся к антигенпредставляющим клеткам) и смешанные.

Этиология

•  Первичные иммунодефициты обусловлены генными и хромосомными дефектами.

•  Вторичные иммунодефициты, или иммунодефицитные состояния имеют большое количество причин:

♦ ЛС с иммуносупрессивным действием (например, глюкокортикоиды, цитостатики).

♦ Недостаточность питания, полостного и мембранного пищеварения, а также кишечного всасывания.

♦ Наркотики и токсические вещества.

♦ Лучевые воздействия.

♦ Рост злокачественных опухолей.

♦ Вирусы (например, ВИЧ).

♦ Состояния, приводящие к потере белка (например, нефротический синдром).

♦ Гипоксия, гипотиреоз, уремия, отсутствие селезенки (аспления) и др.

Факторы риска:

♦ Отягощённый семейный анамнез.

♦ Старение.

Примеры иммунодефицитов

Существует множество отдельных нозологических единиц иммунодефицитов. Ниже перечислены некоторые, наиболее клинически значимые, иммунодефициты.

Синдром ретикулярной дисгенезии. При врождённой алейкии врождён- ный агранулоцитоз и лейкопения приводят к развитию тяжёлого иммунодефицита, часто сочетающегося с гипоплазией вилочковой железы. Синдром ретикулярной дисгенезии характеризуется значительным уменьшением в костном мозге количества стволовых кроветворных клеток, блоком созревания из них миело-, лимфо- и моноцитов с развитием комбинированного дефицита А-, B- и T-клеток, а также нейтрофилов. Пациенты с этим синдромом, как правило, погибают вскоре после рождения от различных инфекций (нередко – от сепсиса) или злокачественных опухолей.

Синдром Шедьяка-Хигаси. При аномалии Шедьяка-ШтайнбринкаХигаси происходит блокада пролиферации миелостволовой клетки, что приводит к многочисленным последствиям: дефектам фагоцитоза, гипогаммаглобулинемии, нейтропении, тромбоцитопении. Характерны изменения всех органов и тканей, а также психомоторные дефекты и выраженная предрасположенность к инфекциям. Тяжёлый комбинированный иммунодефицит. В классическом варианте отсутствуют реакции как гуморального (дефицит АТ), так и клеточного иммунитета (значительно уменьшено число T-клеток и NK-клеток); выявляются алимфоплазия и лимфопения. Смерть наступает к концу первого года жизни от инфекций (если не проведена трансплантация костного мозга).

Другие иммунодефициты: синдром Вискотта-Олдрича, атаксия-телеангиэктазия, хронический кандидоз кожи и слизистых оболочек, хронические гранулематозные заболевания, альбинизм, СПИД, агаммаглобулинемии.

Принципы коррекции иммунодефицитов

♦ При тяжёлой патологии T-клеток показана трансплантация костного мозга.

♦ При гуморальных и комбинированных иммунодефицитах проводят заместительную терапию Ig.

♦ Практически при всех формах необходимо назначение антибиотиков (для профилактики и немедленного лечения инфекций) и иммуностимуляторов (для оптимизации функции неспецифических механизмов иммунитета).

Осложнения иммунодефицитов

•  Тяжёлые инфекции.

•  Злокачественные новообразования (например, при гипогаммаглобулинемии может развиться тимома).

•  Аутоагрессивные иммунные заболевания.

Профилактика

При первичных иммунодефицитах необходимо медико-генетическое консультирование и проведение соответствующих профилактических мероприятий.

ВИЧ-ИНФЕКЦИЯ И СПИД

•  ВИЧ-инфекция – инфекция, вызываемая вирусами иммунодефицита человека (ВИЧ), поражающими лимфоциты, макрофаги, нервные и многие другие клетки.

•  Синдром приобретённого иммунодефицита (СПИД) – вторичный иммунодефицитный синдром, развивающийся в результате ВИЧ-инфекции. СПИД является одним из наиболее клинически значимых иммунодефицитов. Этот синдром был описан в научной литературе в 1981 г. американскими исследователями.

Этиология. Возбудителями являются вирусы иммунодефицита человека рода Retrovirus подсемействаLentivirinae семейства Retroviridae.

Эпидемиология

•  Источник инфекции – человек в любой стадии инфекционного процесса. Вирус выделяют из крови, спермы, влагалищного секрета, материнского молока, слюны.

•  Пути передачи – половой, парентеральный, трансплацентарный, через материнское молоко.

Группы риска. Гомосексуальные и бисексуальные мужчины и женщины; наркоманы, использующие наркотики внутривенно; реципиенты крови и её компонентов, трансплантируемых органов.

Патогенез

•  ВИЧ поражает активированные CD4+-клетки (T-лимфоциты, особенно TH первого типа; моноциты, макрофаги и некоторые другие клетки), используя молекулу CD4 в качестве рецептора.

•  Центральное звено патогенеза СПИДа – иммуносупрессия.

♦ Главная причина уменьшения числа T-клеток – проявление цитопатического эффекта, вызванного репликацией вируса. Аккумуляция неинтегрированной вирусной ДНК в цитоплазме инфицированных клеток обусловливает бурную репликацию ВИЧ и гибель клеток.

♦ Появление вирусных гликопротеинов в мембране заражённых T-клеток – пусковой механизм для аутоиммунных процессов против подобных клеток.

♦ ВИЧ инфицирует клетки-предшественники в тимусе и костном мозге, что приводит к развитию тромбоцито- и лейкопений.

♦ Дефекты гуморального и клеточного иммунитета обусловлены дефицитом T-хелперов. Так, B-клетки продуцируют только АТ с низкой специфичностью к Аг ВИЧ. Иммунодефицит позволяет ВИЧ избегать действия факторов ИБН.

Проявления ВИЧ-инфекции и СПИДа

Стадия сероконверсии (виремии). В течение нескольких недель или месяцев после инфицирования в крови обнаруживают вирус и вирусные Аг при отсутствии специфических АТ в сыворотке, появляющихся у большинства инфицированных ВИЧ через 3-6 мес после заражения. После короткого (2-4 нед) инкубационного периода у 50-90% больных отмечают симптомы, напоминающие инфекционный мононуклеоз или простуду (головная боль, лихорадка, кожная сыпь и лимфаденопатия), спонтанно исчезающие в течение нескольких недель. Бессимптомная стадия. Больной остаётся сероположительным при отсутствии симптомов либо при их минимальной выраженности (обычно диффузная реактивная лимфаденопатия и головная боль). Стадия ранней симптоматики. О переходе бессимптомной ВИЧ-инфекции в заболевание с неспецифическими симптомами свидетельствуют лихорадка, повышенное ночное потоотделение, слабость, хроническая диарея, рассеянная лимфаденопатия и головная боль при отсутствии какой-либо специфической или оппортунистической инфекции. Стадия поздней симптоматики. При прогрессирующем уменьшении CD4+-клеток возрастает риск развития оппортунистических инфекций:

♦ пневмонии, вызванной Pneumocystis carinii;

♦ инфекций, вызванных атипичными микобактериями, например Mycobacterium avium-intracellular;

♦ хронического криптоспоридиоза или изоспориоза;

♦ внекишечного стронгилоидоза.

Отмечается тяжёлое течение, нередко с генерализацией, обычных инфекций: ту- беркулёза, цитомегаловирусной инфекции, токсоплазмоза, кандидоза, нокардиоза, простого и опоясывающего герпеса.

Лечение

•  Основной принцип лечения – этиотропный. В настоящее время применяют ингибиторы обратной транскриптазы ВИЧ (зидовудин, залцитабин, диданозин), ингибиторы протеаз (индинавира сульфат), ингибиторы процессов сборки и созревания дочерних популяций (например, α-интерферон).

•  Проводят профилактику оппортунистических инфекций. С этой целью используют антибактериальные, противовирусные и противопротозойные препараты.

Патологическая толерантность

Иммунологическая толерантность – состояние, характеризующееся «терпимостью» иммунной системы к чужеродным для неё Аг.

Иммунологическую толерантность подразделяют на физиологическую, патологическую и искусственную.

ФИЗИОЛОГИЧЕСКАЯ ТОЛЕРАНТНОСТЬ

Физиологическая толерантность подразумевает «терпимость» системы ИБН к собственным Аг.

Основные механизмы развития физиологической толерантности.

♦ Элиминация в антенатальном периоде тех клонов лимфоцитов, которые подверглись антигенной перегрузке – воздействию собственных Аг.

♦ Изоляция Аг ряда органов от контакта с иммуноцитами структурно-физиологическими (гемато-тканевыми) барьерами. К таким органам относятся мозг, глаза, семенники, щитовидная железа. Эту разновидность толерантности называют изоляционной.

♦ Подавление пролиферации и дифференцировки аутоагрессивных T-лимфоцитов в тимусе. Этот феномен называют центральной селекцией и ликвидацией аутоцитотоксических лимфоцитов.

♦ Апоптоз клонов лимфоцитов, активирующихся аутоантигенами.

♦ Депрессия аутоцитотоксических лимфоцитов T-супрессорами.

ПАТОЛОГИЧЕСКАЯ ТОЛЕРАНТНОСТЬ

В этом случае речь идет о «терпимости» системой ИБН чужеродных Аг, чаще всего – бактерий, вирусов, клеток опухолей, чужеродного трансплантата.

Основные причины и механизмы патологической толерантности.

♦ Иммунодефициты. Они приводят к неспособности полноценного ответа системы ИБН на Аг.

♦ Чрезмерная активность T-супрессоров. Характеризуется торможением созревания эффекторных клеток иммунной системы: T-киллеров, естественных киллеров, плазматических клеток.

♦ Ингибирование или блокада цитотоксических реакций клеточного иммунитета на соответствующий Аг (чаще всего клеток опухоли, трансплантата или вируссодержащих клеток).

♦ Перегрузка иммуноцитов избытком образующихся в организме или вводимых в него извне чужеродных Аг. Это может наблюдаться при синтезе аномальных белков в печени, амилоидозе, денатурации белковых молекул при обширных ожогах.

ИСКУССТВЕННАЯ ТОЛЕРАНТНОСТЬ

Индуцированную (искусственную, медицинскую) толерантность воспроизводят путём целенаправленного подавления активности иммунной системы. Обычно с этой целью применяют ионизирующее излучение или высокие дозы иммунодепрессантов. Для создания искусственной толерантности применяют также специальные имплантируемые камеры, непроницаемые для иммуноцитов (например, с фрагментами эндокринной железы для устранения недостатка эндогенного гормона).

Состояние индуцированной толерантности применяют для повышения успеха трансплантации органов и тканей, лечения аллергии, болезней иммунной аутоагрессии, эндокринной недостаточности и некоторых других состояний.

Реакция «трансплантат против хозяина»

Реакция «трансплантат против хозяина» развивается при трансплантации реципиенту («хозяину») тканей донора, содержащих иммуноциты (например, костного мозга, селезёнки, лейкоцитарной массы). Условияразвития реакций «трансплантат против хозяина»:

♦ Генетическая чужеродность донора и реципиента.

♦ Наличие в трансплантате большого числа лимфоцитов.

♦ Неспособность реципиента уничтожить или отторгнуть этот трансплантат.

• Проявления реакции «трансплантат против хозяина» обусловлены поражением тканей и органов иммунной системы реципиента и развитием в связи с этим иммунодефицита. Повреждаются также другие ткани и органы: кожа, мышцы, ЖКТ, печень, почки. У взрослых реакция «трансплантат против хозяина» проявляется трансплантационной болезнью (гомологичной болезнью; термин происходит от слова «гомотрансплантат»).

•  У детей развивается рант-болезнь – болезнь малого роста (от англ. runt, наименьшая особь). Нарушение физического развития ребёнка сочетается с полиорганной недостаточностью, склонностью к развитию инфекций и новообразований.

Аллергические реакции

При обнаружении носителя чужеродной антигенной информации система ИБН, как правило, обеспечивает его нейтрализацию, деструкцию и удаление из организма. Однако, иммунные реакции не всегда протекают по этой схеме. Нередко одновременно происходит повреждение и разрушение собственных клеток и неклеточных структур, что сопровождается расстройством функций многих тканей, органов и их физиологических систем. Такой тип иммунных реакций получил название реакций изменённой или аномально повышенной чувствительности (гиперчувствительности). Австрийский патолог фон Пирке в 1906 г. предложил для обозначения этих реакций термин «аллергия».

Аллергия – типовая патологическая форма иммунной реактивности, при которой ответ на чужеродный Аг сопровождается повреждением собственных структур организма.

Аллергия выявляется у 10-20% населения. Наиболее часто среди аллергических болезней встречаются поллинозы, бронхиальная астма, контактная аллергия, анафилактические реакции.

ОБЩИЕ ПРИЗНАКИ АЛЛЕРГИИ

Аллергические реакции направлены на обнаружение, локализацию (фиксацию), деструкцию и удаление из организма причины аллергии – носителя Аг. Следовательно, при аллергии, как и при нормальной – иммунной реакции, достигается поддержание антигенной индивидуальности и однородности организма путём удаления из него чужеродных структур. Однако, эти механизмы при аллергии не совершенны, и не всегда могут обеспечить ликвидацию чужеродных антигенов, а также имеют ряд отличий от физиологической формы иммунной реактивности:

•  Повреждение, наряду с чужеродными, собственных структур организма.

•  Неадекватность реакции на Аг. Она проявляется реакцией гиперчувствительности (гиперергическим ответом), часто – генерализованной.

•  Развитие, помимо собственно аллергической реакции, других – неиммунных расстройств в организме.

•  Снижение адаптивных возможностей организма в целом.

ЭТИОЛОГИЯ

Причина аллергических реакций: Аг, называемые в данном случае аллергенами.

Аллерген – вещество экзоили эндогенного происхождения, вызывающее образование АТ, сенсибилизированных лимфоцитов, а также – медиаторов аллергии, повреждающих как носителей аллергена, так и собственные структуры организма.

Виды аллергенов

Аллергены попадают в организм извне (экзогенные) или образуются в нём самом (эндогенные).

•  Экзогенные аллергены проникают в организм одним или несколькими путями: через ЖКТ, дыхательные пути, кожу и слизистые, кровь, лимфу, ликвор, плаценту. Экзогенные аллергены являются наиболее частой причиной реакций гиперчувствительности. К ним относятся:

♦ Продукты питания (наибольшей аллергенностью обладают молоко, яйца, рыба, фрукты и овощи).

♦ Многие ЛС и вакцины.

♦ Пыльца растений, трав, деревьев, кустарников, цветов, компоненты пыли (неорганические и органические).

♦ Синтетические соединения различного происхождения.

•  Эндогенные аллергены – белок или белоксодержащие соединения, образующиеся в результате денатурации клеток и неклеточных структур, а также при их модификации под влиянием веществ эндоили экзогенного происхождения.

ВИДЫ АЛЛЕРГИИ

Существует несколько критериев дифференцировки аллергий, в основу которых положены различные критерии.

Механизм гиперчувствительности. Джелл и Кумбс подразделили гиперчувствительность на четыре основных типа (в зависимости от механизмов, участвующих в их реализации). Иммунопатологические процессы опосредованы, как правило, комбинацией нескольких реакций гиперчувствительности.

Природа сенсибилизирующего и разрешающего аллергенов

•  Специфическая аллергия обусловлена повторным попаданием в организм или образованием в нём того же аллергена (его называют разрешающим), который при первом воздействии сенсибилизировал этот организм (сенсибилизирующего).

•  Нередко развиваются так называемые неспецифические аллергические реакции.

 Параллергия. Когда белковые аллергены (как сенсибилизирующий, так и разрешающий) имеют близкую, но не идентичную структуру, развиваются параллергические реакции (например, при проведении вакцинаций от различных болезней с небольшими промежутками времени между ними).

 Гетероаллергия возникает в тех случаях, когда разрешающим агентом является какое-либо неантигенное воздействие (например, охлаждение, перегревание, интоксикация, облучение организма). В подобных случаях непосредственным разрешающим агентом являются те вещества, которые образуются в организме под влиянием указанных факторов.

Генез аллергизирующих АТ или сенсибилизированных лимфоцитов

•  Активная аллергия. В большинстве случаев аллергическая реакция формируется в организме активно, т.е. в ответ на внедрение в него или образование в организме аллергена. Такую разновидность аллергии называют активной.

•  Пассивная аллергия является результатом попадания в организм крови или её компонентов, содержащих аллергические АТ либо лимфоциты из ранее аллергизированного организма.

Сроки развития клинических проявлений

В зависимости от времени начала клинических проявлений аллергии после действия на сенсибилизированный организм разрешающего Аг аллергические реакции подразделяют на немедленные, отсроченные и замедленные.

•  Аллергическая реакция немедленного типа клинически проявляется сразу или через несколько минут после контакта организма с аллергеном (например, аллергический ринит, аллергический конъюнктивит, анафилактический шок, атопическая форма бронхиальной астмы).

•  Аллергическая реакция отсроченного (позднего) типа выявляется в течение первых 6-12 ч после контакта с разрешающим Аг (например, гемолитические анемии, тромбоцитопении или лейкопении аллергического генеза; отдельные разновидности сывороточной болезни).

•  Аллергическая реакция замедленного типа регистрируется обычно через 1-2 сут после воздействия разрешающего аллергена на сенсибилизированный организм (например, туберкулиновая, бруцеллиновая, сифилитическая реакции; контактный дерматит).

СТАДИИ АЛЛЕРГИЧЕСКОЙ РЕАКЦИИ

В динамике любой аллергической реакции можно выделить три последовательно развивающиеся стадии: иммуногенную, патобиохимическую и клинических проявлений.

Иммуногенная стадия

Иммуногенная стадия (сенсибилизации, первичного контакта) заключается в развитии нескольких взаимосвязанных явлений.

•  Обнаружение аллергена антигенпредставляющими клетками и передача информации о нём лимфоцитам.

•  Синтез плазматическими клетками аллергических пулов Ig или пролиферация сенсибилизированных лимфоцитов.

•  Фиксация Ig и сенсибилизированных лимфоцитов.

♦ При развитии местной формы аллергии – преимущественно в регионе локализации сенсибилизирующего аллергена.

♦ При генерализованной форме аллергии – в биологических жидкостях (крови, лимфе, ликворе).

Клинически состояние сенсибилизации практически не проявляется. Вместе с тем можно обнаружить отклонения от нормы реактивных свойств сенсибилизированных органов, активности некоторых ферментов, концентрации Ig, числа отдельных пулов иммуноцитов и некоторые другие изменения в организме.

Патобиохимическая стадия

Патобиохимическая стадия развивается при повторном попадании в организм или образовании в нём того же Аг, которым он был сенсибилизирован. При этом образуются комплексы аллергена со специфическими АТ или сенсибилизированными лимфоцитами. В ряде реакций в этот комплекс включаются и факторы системы комплемента.

•  Иммунные комплексы фиксируются в местах наибольшей концентрации аллергена и АТ (при местных аллергических реакциях, например – феномене Артюса) либо в биологических жидкостях (при генерализованной аллергии, например – анафилактическом шоке или сывороточной болезни).

•  Под действием указанных комплексов в различных клетках образуются, активируются и высвобождаются БАВ различного спектра действия – медиаторы аллергии.

•  Медиаторы аллергии обусловливают как дальнейшее развитие аллергической реакции (её динамику, специфику, выраженность, длительность), так и формирование характерных для неё общих и местных признаков.

Стадия клинических проявлений

Стадия клинических проявлений (патофизиологическая) характеризуется развитием как местных патологических процессов (в клетках- и тканях-мишенях), так и генерализованных расстройств жизнедеятельности организма.

•  Патологические процессы местного характера состоят в развитии различных видов дистрофий, воспаления, повышения проницаемости сосудистых стенок, расстройств регионарного кровообращения, гипоксии, отёка тканей.

•  Расстройства жизнедеятельности организма в целом. Наблюдаются, например, при аллергической бронхиальной астме, сопровождающейся дыхательной недостаточностью; при аллергическом постинфарктном миокардите (синдроме Дресслера), приводящему к сердечной недостаточности; при диффузном гломерулонефрите, завершающемся почечной недостаточностью и т.д.

ПАТОГЕНЕЗ АЛЛЕРГИЧЕСКИХ РЕАКЦИЙ

В 1964 г. Джелл и Кумбс предложили выделять четыре типа реакций гиперчувствительности, в основе которых лежат различия в патогенетических механизмах реакций гиперчувствительности. Принадлежность к тому или иному типу определяется локализацией и классом АТ или лимфоцитов, взаимодействующих с аллергеном.

•  Первый (I) тип – атонические аллергические реакции (анафилактические или реагиновые)опосредованы преимущественно иммуноглобулинами классов IgE и G4.

•  Второй (II) тип – цитотоксическое повреждение, осуществляется при участии IgG или IgM, взаимодействующих с аллергенами, находящимися на клетках собственных тканей индивидуума.

•  Третий (III) тип – иммунокомнлексные, нрецинитиновые аллергические реакции с развитием состояний и болезней иммунных комплексов. При этом образуются комплексы аллергенов с IgG и IgM. Не удаляемые из кровотока комплексы антиген+антитело фиксируются в капиллярах, где индуцируют повреждение тканей.

•  Четвёртый (IV) тип – гинерчувствительность замедленного тина. Контакт аллергена с Аг-специфическими рецепторами на T-клетках приводит к клональному увеличению и активации этой популяции лимфоцитов.

Ниже приводится характеристика основных звеньев патогенеза аллергических реакций в соответствии с патогенетическим принципом их классификации по Джеллу и Кумбсу. Первые три из них являются реакциями немедленного, а четвёртая – замедленного типа.

Аллергические реакции типа I

При развитии атопических реакций немедленного типа, происходит взаимодействие Аг с АТ (IgE и IgG4), приводящее к высвобождению БАВ – медиаторов аллергии (главным образом, гистамина) из тучных клеток и базофилов (рис. 16-1).

Причиной аллергических реакций типа I чаще всего являются экзогенные агенты (компоненты пыльцы растений, трав, цветов, деревьев, животные и растительные белки, некоторые ЛС, органические и неорганические химические вещества).

Стадия сенсибилизации протекает с формированием специфичных по отношению к Аг клонов плазматических клеток, синтезирующих IgE и IgG4. Эти иммуноглобулины фиксируются преимущественно на поверхности тучных клеток и базофилов.

Патобиохимическая стадия развивается при повторном попадании аллергена в организм и его взаимодействии с фиксированными на поверхности клеток-мишеней IgE, что сопровождается немедленным выбросом содержимого гранул этих клеток (медиаторов аллергии) в межклеточное пространство. Эффекты медиаторов аллергии:

♦ Повышение проницаемости стенок сосудов микроциркуляторного русла и развитие отёка тканей.

♦ Нарушения кровообращения.

♦ Сужение просвета бронхиол, спазм кишечника.

♦ Гиперсекреция слизи.

♦ Прямое повреждение клеток и неклеточных структур.

Стадия клинических проявлений обусловлена развитием вышеуказанных эффектов в органах-мишенях. Чаще всего по описанному механизму развиваются поллинозы, аллергические формы бронхиальной астмы, аллергические конъюнктивит, дерматит, гастроэнтероколит, а также анафилактический шок.

Псевдоаллергические реакции

Сходные с описанными выше патобиохимические и клинические изменения наблюдаются и при так называемых псевдоаллергических реакциях. Последние развиваются вскоре после энтерального или парентерального попадания в организм различных агентов, вызывающих дегрануляцию тучных клеток. Чаще всего этими веществами являются продукты питания (шоколад, цитрусовые, некоторые ягоды и пр.), ЛС, гербициды, пестициды и др.

Важная особенность псевдоаллергических реакций – их развитие без видимого периода сенсибилизации. Проявления псевдоаллергических реакций: крапивница и отёк Квинке, высыпания различного вида, зуд, покраснение кожи, диарея, приступы удушья и даже состояния, напоминающие анафилактический шок.

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A015,pic_0025.jpg,-1,,00000000,)

Рис. 16-1. Активация и дегрануляция тучных клеток при анафилактических реакциях (тип I гиперчувствительности по Джеллу и Кумбсу). [по 4].

Аллергические реакции типа II

При цитотоксических аллергических реакциях иммуноглобулины (обычно IgG или IgM) связываются с Аг на поверхности собственных клеток, что сопровождается разрушением последних фагоцитами, клетками-киллерами или системой комплемента. Причиной аллергических реакций типа II наиболее часто являются вещества со сравнительно небольшой молекулярной массой и высокой химической активностью (например, ЛС, гидролитические ферменты, свободные радикалы и пр.). Указанные агенты изменяют антигенную структуру белковых компонентов клеточных мембран и неклеточных элементов.

Стадия сенсибилизации протекает с активацией B-лимфоцитов и трансформацией их в плазматические клетки, синтезирующие IgG подклассов 1, 2 и 3, а также IgM.

Патобиохимическая стадия развивается при повторном попадании аллергена в организм и изменении под его влиянием структуры собственных Аг. Иммуноглобулины взаимодействуют с изменёнными антигенными детерминантами на поверхности клеток и неклеточных структур организма. При этом реализуются механизмы комплементзависимого и антителозависимого разрушения носителя антигенной информации.

Стадия клинических проявлений обусловлена повреждением изменён- ных структур организма с формированием ряда клинических синдромов аллергического характера: «лекарственных» цитопений (эритро-, лейко-, тромбоцитопений), гемолитической болезни новорождённых; аллергических или инфекционно-аллергических форм нефрита, миокардита, энцефалита, гепатита, тиреоидита, полиневрита и др.

Аллергические реакции типа III

Для иммунокомплексных аллергических реакций характерно повреждение структур организма посредством иммунных комплексов. Причиной аллергических реакций этого типа являются хорошо растворимые экзо- и эндогенные белки (например, при вакцинации, укусах некоторых насекомых, инфицировании микробами или грибами, опухолевом росте).

Стадия сенсибилизации протекает с активацией аллергенами B-лимфо- цитов, что сопровождается продуцированием IgG и IgM, которые при контакте с Аг образуют преципитаты. Эти преципитаты называют иммунными комплексами, а болезни, в патогенезе которых они играют существенную роль, иммунокомплексными.

♦ Если иммунные комплексы образуются в крови или лимфе, а затем фиксируются в различных тканях и органах, то развивается системная (генерализованная) форма аллергии. Примером её может служить сывороточная болезнь. ♦ В тех случаях, когда иммунные комплексы формируются вне сосудов и фиксируются в определённых тканях, развиваются местные формы аллергии (например, мембранозный гломерулонефрит, васкулиты, периартерииты, альвеолит, феномен Артюса). Патобиохимическая стадия обусловлена активацией реакций по удалению иммунных комплексов. В тканях и крови появляются медиаторы аллергии, которые вызывают повреждение клеток и неклеточных образований. Устранение иммунных комплексов при участии фагоцитов потенцирует и расширяет масштаб и степень аллергической альтерации. Активация проагрегантов и прокоагулянтов создаёт условия для тромбообразования, нарушений микроциркуляции, ишемии тканей, развития в них дистрофии и некроза (рис. 16-2).

Стадия клинических проявлений является следствием прямого действия иммунных комплексов на клетки и ткани, а также эффектов медиаторов аллергии и фагоцитоза. Этот тип аллергической реакции является ключевым звеном патогенеза сывороточной болезни, мембранозного гломерулонефрита, альвеолитов, васкулитов, узелковых периартериитов, феномена Артюса и др.

Аллергические реакции типа IV

В замедленных клеточно-опосредованных аллергических реакциях принимают участие не АТ, а T-клетки. Сенсибилизированные T-лим- фоциты (после презентации им Аг) оказывают как непосредственное цитотоксическое действие на клетки-мишени, так и с помощью лимфокинов.

Причиной аллергических реакций типа IV чаще всего являются компоненты возбудителей инфекций (туберкулёза, лепры, бруцеллёза; паразиты, грибы, вирусы), а также некоторые белки неинфекционной природы (например, изменённый коллаген).

Стадия сенсибилизации включает активацию и антигензависимую дифференцировку T-лимфоцитов в T-хелперы (T-эффекторы реакций гиперчувствительности замедленного типа) и T-киллеры.Патобиохимическая стадия. При повторном контакте иммунокомпетентных клеток с аллергеном происходит пролиферация и созревание большого числа различных T-лимфоцитов, преимущественно цитотоксических. Сенсибилизированные T-киллеры разрушают клеткимишени как непосредственно, так и с помощью выделения медиаторов аллергии и индукции гранулёматозного воспаления. Гранулёмы состоят из лимфоцитов, мононуклеарных фагоцитов, формирующихся из них эпителиоидных и гигантских клеток, фибробластов и волокнистых структур.

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A015,pic_0026.jpg,-1,,00000000,)

Рис. 16-2. Фазы повреждения сосудов при иммунокомплексных болезнях (тип III гиперчувствительности по Джеллу и Кумбсу). А – образование иммунного комплекса; Б – фиксация имунных комплексов; В – воспаление, опосредованное иммунными комплексами. НЛ – нейтрофильный лейкоцит, [по 4].

Стадия клинических проявлений. Наиболее часто реакции манифестируются как инфекционно-аллергические (туберкулиновая, бруцеллиновая, сальмонеллёзная), в виде диффузного гломерулонефрита (инфекционно-аллергического генеза), контактных аллергий – дерматита, конъюнктивита.

ПРИНЦИПЫ ТЕРАПИИ И ПРОФИЛАКТИКИ

Лечение и профилактика аллергических реакций основана на реализации этиотропного, патогенетического, саногенетического и симптоматического принципов.

Этиотропная терапия и профилактика

Этиотропная терапия направлена на устранение аллергена из организма. Проводят мероприятия по удалению из организма микробов, паразитов, грибов, простейших (санация) и выведению из организма аномальных белков и других аллергических соединений. Профилактика подразумевает предотвращение контакта организма с аллергеном: пыльцой, пылью, компонентами шерсти животных, органическими и неорганическими веществами, ЛС и др.

Патогенетическая терапия

Патогенетическая терапия направлена на разрыв основных звеньев патогенеза аллергии, а профилактика – на опережающую блокаду потенциальных механизмов её развития (иммуногенных сенсибилизирующих процессов, образование медиаторов аллергии). С этой целью проводят специфическую или неспецифическую гипосенсибилизацию.

•  Специфической гипосенсибилизации достигают путём парентерального введения по определённым схемам сенсибилизирующего аллергена (метод рассчитан на образование комплекса аллергена с АТ и снижение содержания соответствующих Ig).

•  Неспецифическую гипосенсибилизацию применяют в тех случаях, когда специфическая по каким-либо причинам невозможна или неэффективна, либо когда не удаётся выявить аллерген. Её можно достичь применением некоторых ЛС (например, антигистаминных и мембраностабилизирующих) при аллергии немедленного типа; иммунодепрессантов (в том числе глюкокортикоидов) и иммуномодуляторов – при аллергии замедленного типа, а также используя некоторые виды физиотерапевтических воздействий.

Саногенетическая терапия направлена на активацию защитных, компенсаторных, репаративных и других адаптивных процессов и реакций в тканях, органах и организме в целом. С этой целью применяют витамины, адаптогены (женьшень, элеутерококк), проводят немедикаментозные мероприятия: закаливание, физические нагрузки, лечебное голодание и другие.

Симптоматический принцип подразумевает предотвращение или устранение симптомов, усугубляющих течение аллергии: головной боли, головокружения, чувства тревоги, напряжения, подавленности и т.п.

Болезни иммунной аутоагрессии

Состояния и болезни иммунной аутоагрессии вызваны развитием патогенных иммунных реакций, направленных против неизменённых Аг собственных клеток и неклеточных структур.

ЭТИОЛОГИЯ И ПАТОГЕНЕЗ

Конкретные причины и механизмы отдельных болезней иммунной аутоагрессии сложны и ещё недостаточно изучены. По механизмам происхождения различают заболевания, обусловленные изменениями в системе ИБН (ИБН-зависимые болезни) или вызванные изменениями вне системы ИБН (ИБН-независимые болезни).

ИБН-зависимые болезни иммунной аутоагрессии

В основе их возникновения и развития лежит образование в системе ИБН «запретных» клонов T- и B-лимфоцитов, а также Ig, действующих против собственных интактных структур. При этих болезнях и состояниях, как правило, выявляют признаки наследственной предрасположенности. Варианты патогенеза

•  Мутации в пролиферирующих иммуноцитах в результате воздействия агентов физической, химической или биологической природы. В результате появляются иммунокомпетентные клетки с изменённым геномом, воспринимающие антигенные структуры организма как чужеродные и повреждающие их.

Примеры: развитие цитопений (гемолитической анемии, тромбоцито-, лейкоили панцитопении); появление иммуноагрессивных аутоантител после инфицирования B-лимфоцитов лимфотропным вирусом Эпстайна-Барр.

•  Нарушение оптимального соотношения количества или активности T-супрессоров и T-хелперов. Это приводит к интенсивной пролиферации эффекторных лимфоцитов (T-киллеров и B-лимфоцитов, созревающих в плазматические клетки), что приводит к разрушению нормальных структур организма.

Примеры: СКВ, ревматоидный артрит, рассеянный склероз.

•  Нарушение оптимального соотношения в системе «идиотип-антиидиотип». В норме численность и биохимическая специфика АТ (идиотипов) контролируется посредством образования «надсмотрщиков», специфичных (комплементарных) идиотипам. При возникновении аутоагрессивных АТ происходит синтез «аутоантител к аутоантителам», которые получили название антиидиотипических (или антиидиотипов). При различных экзо- и эндогенных воздействиях могут сложиться условия, благоприятствующие синтезу «за- прещённых» классов Ig и возникновению иммунной аутоагрессии. Примеры: отдельные разновидности гемолитической анемии, тромбоцито- и лейкопении, СКВ, склеродермии, миопатий.

•  Отмена анергии T-лимфоцитов к аутоантигенам наблюдается при воздействии на T-лимфоциты избытка костимулирующих факторов (например, ИЛ12).

•  Поликлональная антигеннеспецифическая активация T- и B-лим- фоцитов под воздействием продуктов обмена веществ микроорганизмов или ЛПС.

ИБН-независимые болезни иммунной аутоагрессии

Патогенез ИБН-независимых болезней иммунной аутоагрессии не отличается от естественного хода нормальных реакций иммунитета, но иммуноагрессивной атаке подвергаются генетически неизменённые аутологичные структуры собственного организма. Отмена толерантности к Аг организма. Клетки и ткани, в пренатальном онтогенезе изолированные гистогематическими барьерами и не имевшие контакта с иммунокомпетентными лимфоцитами, в постнатальном периоде воспринимаются иммунной системой как «чужие» для неё. К таким «забарьерным», антигенно чужеродным для ИБН структурам относятся сперматозоиды, кристаллин хрусталика, белки миелина, коллоид клеток щитовидной железы. Нарушение барьеров обусловливает иммунную аутоагрессию с повреждением и деструкцией указанных структур.

Наиболее частые причины: травма, воспаление, некроз. Например, при механическом повреждении глаза иммунной аутоагрессии подвергается не только ткань повреждённого глаза, но и другого – неповреждённого. Этот феномен получил название симпатической (т.е. содружественной) офтальмии.Изменение антигенного состава тканей

•  Модификация собственных Аг под воздействием веществ инфекционной или неинфекционной природы сопровождается развитием иммунной аутоагрессии.

Примеры:

♦ Развитие иммуноагрессивных вариантов постинфекционного эндо-, мио- и перикардита, нефрита, гепатита, альвеолита.

♦ Патологические состояния, вызванные реакциями иммунной аутоагрессии у пациентов с ожоговой болезнью: гемолитическая анемия, тромбоцито- и лейкопении, нефриты, миокардиты, полиневриты и др.

•  Модификация генома клеток вследствие, как правило, интеграции в него вирусной ДНК.

Внедрение в организм Аг, сходных с Аг его тканей (антигенная мимикрия).

•  Причины: антигенные детерминанты некоторых инфекционных агентов имеют структуру, подобную структуре отдельных Аг нормальных тканей.

•  Механизм: АТ, образующиеся в организме в ответ на внедрение носителя чужеродной антигенной информации, действуют не только против носителя АТ, но и против собственных структур. Этот феномен получил название перекрёстной иммунной аутоагрессии.

•  Примеры: развитие аутоагрессивных вариантов различных заболеваний.

♦ Гемолитической анемии при лейшманиозе.

♦ Диффузного гломерулонефрита при инфицировании организма β-гемолитическим стрептококком.

♦ Энтероколита у пациентов с патогенными штаммами кишечной палочки.

♦ Миокардита после перенесённой стрептококковой инфекции – ангины, пневмонии, гайморита.

ВИДЫ БОЛЕЗНЕЙ ИММУННОЙ АУТОАГРЕССИИ

Многочисленные варианты болезней иммунной аутоагрессии человека объединяются в несколько групп с учётом основных отличительных признаков.

•  В зависимости от инициального (стартового) звена патогенеза: болезни иммунной аутоагрессии, обусловленные нарушениями в системе ИБН и вне системы ИБН (см. выше).

•  В зависимости от доминирующего механизма развития.

♦ Болезни иммунной аутоагрессии, развивающиеся, в основном, с участием иммуноглобулинов (гуморальные, иммуноглобулиновые, B-клеточные). Примеры: тиреоидит Хасимото, гемолитическая анемия, тромбоцитопения, лейкопения, СКВ.

♦ Болезни иммунной аутоагрессии, развивающиеся, в основном, с участием T-киллеров (T-киллерные, T-клеточные). Примеры: отдельные разновидности полимиозита и синдрома Шёгрена.

♦ Болезни иммунной аутоагрессии, развивающиеся с участием обоих звеньев иммунного ответа (кооперативные). Примеры: синдром Шёгрена, проявляющийся поражением глаз (сухой кератоконъюнктивит) и слизистой оболочки рта (ксеростомия); склеродермия; дермато- и полимиозит.

•  В зависимости от числа поражённых органов.

♦ Моноорганные болезни иммунной аутоагрессии (органоспецифические). Примеры: тиреоидит Хасимото, анемия АддисонаБирмера.

♦ Полиорганные болезни иммунной аутоагрессии (системные, генерализованные). Примеры: СКВ, склеродермия.

ГЛАВА 17. ОПУХОЛЕВЫЙ РОСТ

Ежегодно на земном шаре новообразования выявляются примерно у 6 000 000 человек. Средние показатели заболеваемости в различных странах колеблются в диапазоне 190-300 случаев на 100 000 населения. Злокачественные опухоли зачастую становятся причинами смерти людей.

Опухолевый рост – типовая форма нарушения тканевого роста, возникающая под действием канцерогена. Характерезуется атипизмом роста, обмена веществ, структуры и функции.

Опухолевый рост проявляется патологическим разрастанием ткани с атипичными свойствами.

Согласно цитологической и гистологической структуре опухолевых клеток и тканей выделяют доброкачественные и злокачественные опухоли. Доброкачественные опухоли. Клетки их морфологически похожи на нормальные и формируют характерные для данной ткани,высокодифференцированные структуры. Такие опухоли растут медленно и, как правило, не метастазируют.

Злокачественные опухоли. Клетки их морфологически отличаются от нормальных и образуютнизкодифференцированные тканевые структуры. Эти опухоли растут быстро, инвазируют в соседние ткани, формируют метастазы. Выделяют следующие разновидности злокачественных опухолей:

♦ Карциномы – злокачественные опухоли, происходящие из эпителия.

♦ Саркомы – злокачественные опухоли, возникающие из тканей мезенхимального происхождения (соединительных, костной, хрящевой).

Этиология

Инициальным звеном опухолевого роста является образование опухолевых клеток под воздействием канцерогенов.

Опухолевая трансформация – процесс превращения нормальных клеток в опухолевые вследствие трансформации нормальной генетической программы в программу формирования опухолевого атипизма.

ПРИЧИНЫ

Факторы химической, физической и биологической природы, способные вызвать опухолевую трансформацию, называют канцерогенами.

•  Химические канцерогены. Более 75% случаев злокачественных опухолей человека вызвано воздействием химических факторов внешней среды. К возникновению опухолей приводят преимущественно продукты сгорания табака, некоторые компоненты пищи и промышленные соединения. Известно более 1500 химических соединений, обладающих канцерогенным эффектом. Из них не менее 20 опре- делённо являются причиной опухолей у человека. Например, к ним отнесены 2-нафтиламин, бензидин, 2-аминотиофенил, вызывающие рак мочевого пузыря у работников анилинокрасочной и резиновой промышленности; бис-(хлорметил)-эфир, приводящий к возникновению рака бронхов и лёгких.

•  Физические канцерогены: ионизирующее излучение (α-, β- и γ-излучение), рентгеновские и ультрафиолетовые лучи, поток нейтронов. Так, врачи-рентгенологи заболевают лейкозами в 8-9 раз чаще, чем врачи других специальностей.

•  Онкогенные вирусы.

 ДНК-вирусы, вызывающие опухолевую трансформацию, называют онковирусами. Гены ДНК-онковирусов способны непосредственно внедряться в геном клетки-мишени. Участок ДНК-вируса (собственно онкоген), интегрированный с клеточным геномом, может осуществить опухолевую трансформацию клетки. Не исключают также, что один из генов онковируса может играть роль промотора клеточного протоонкогена. К ДНК-содержащим онковирусам относят некоторые аденовирусы, паповавирусы и герпесвирусы (так, вирус Эпстайна-Барр вызывает развитие лимфом, а вирус гепатита B способен инициировать рак печени).

 РНК-содержащие вирусы, относящиеся к ретровирусам. Интеграция РНК-генов ретровирусов в клеточный геном происходит не непосредственно, а после образования их ДНК-копий.

УСЛОВИЯ, СПОСОБСТВУЮЩИЕ ВОЗНИКНОВЕНИЮ ОПУХОЛЕЙ (ФАКТОРЫ РИСКА)

Наследственные факторы. Существует не менее 300 так называемых семейных форм злокачественных опухолевых заболеваний. В ряде случаев генетическая природа предрасположенности к возникновению опухолей определена. К числу наиболее значимых относятся следующие:

•  Аномалии генов, контролирующих процесс репарации ДНК. Это определяет повышенную чувствительность к канцерогенным воздействиям.

•  Аномалии генов-супрессоров опухолевого роста. Выявлены при новообразованиях толстой кишки и поджелудочной железы (делеция 18q21.1), множественном канцероматозе (потеря гетерозиготности в 10q23).

•  Аномалии генов синтеза молекул межклеточного взаимодействия, например, E-кадгерина (расположенного в 16q22.1). Уменьшение экспрессии E-кадгерина – один из молекулярных механизмов, способствующих инвазии и метастазированию опухоли.

•  Другие генные и хромосомные дефекты: мутации гена рецептора андрогенов (расположенного в хромосоме X) вызывают рак молочной железы у мужчин; различные хромосомные дефекты зарегистрированы при лейкозах; аномалии хромосом 8 и 9 выявляются при наследственных формах меланом кожи.

Низкая активность механизмов противоопухолевой защиты организма (см. ниже).

Патогенез

Клетка под воздействием канцерогена претерпевает ряд последовательных изменений, которые приводят к опухолевому росту. Механизм развития опухолевого роста называют канцерогенезом.

ОБЩИЕ ЭТАПЫ КАНЦЕРОГЕНЕЗА

Вне зависимости от конкретной причины опухолевой трансформации клетки, гистологической структуры и локализации новообразования, в процессе канцерогенеза можно выделить несколько общих этапов (рис. 17-1).

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A016,pic_0027.jpg,-1,,00000000,)

Рис. 17-1. Этапы опухолевого роста. [по 4].

•  На первом этапе происходит взаимодействие канцерогенов химической, физической или биологической природы с протоонкогенами и антионкогенами (онкосупрессорами) генома нормальной клетки.

•  На втором этапе канцерогенеза (в результате воздействия канцерогена на геном) подавляется активность антионкогенов и происходит трансформация протоонкогенов в онкогены. Последующая экспрессия онкогена – необходимое и достаточное условие для опухолевой трансформации.

•  На третьем этапе канцерогенеза, в связи с экспрессией онкогенов, синтезируются и реализуют свои эффекты (непосредственно или с участием клеточных факторов роста и рецепторов к ним) онкобелки. С этого момента генотипически изменённая клетка приобретает опухолевый фенотип.

•  Четвёртый этап канцерогенеза характеризуется пролиферацией и увеличением числа опухолевых клеток, что ведёт к формированию новообразования (опухолевого узла).

ОСОБЕННОСТИ ЭТАПОВ ХИМИЧЕСКОГО,

ФИЗИЧЕСКОГО И ВИРУСНОГО КАНЦЕРОГЕНЕЗА Этапы химического канцерогенеза

Сами по себе потенциально канцерогенные вещества не вызывают опухолевого роста. В связи с этим их называют проканцерогенами, или преканцерогенами. В организме они подвергаются физико-химическим превращениям, в результате которых становятся истинными, конечными канцерогенами. Считают, что конечными канцерогенами являются алкилирующие соединения, эпоксиды, диолэпоксиды, свободнорадикальные формы ряда веществ.

Выделяют два взаимосвязанных этапа химического канцерогенеза: инициации и промоции.

•  На этапе инициации конечный канцероген взаимодействует с генами, контролирующими деление и созревание клетки (протоонкогенами). При этом происходит либо мутация протоонкогена (геномный механизм изменения генетической программы), либо его регуляторная дерепрессия (эпигеномный механизм). Протоонкоген превращается в онкоген. Это и обеспечивает опухолевую трансформацию клетки. И хотя такая клетка ещё не имеет опухолевого фенотипа (её называют «латентной» опухолевой клеткой), процесс инициации уже необратим. Инициированная клетка становится иммортализованной (бессмертной, от англ. immortality – вечность, бессмертие). Она лишается так называемого лимита Хайфлика: строго ограниченного числа делений (в культуре клеток млекопитающих обычно около 50).

•  На этапе промоции осуществляется экспрессия онкогена, происходит неограниченная пролиферация клетки, ставшей генотипически и фенотипически опухолевой, формируется новообразование.

Этапы физического канцерогенеза

Мишенью канцерогенных агентов физической природы также является ДНК. Допускается либо их прямое действие на геном, либо через посредники – медиаторы канцерогенеза. К последним относят свободные радикалы кислорода, липидов и других органических и неорганических веществ.

•  Этап инициации заключается в прямом или опосредованном воздействии агентов физической природы на ДНК. Это вызывает либо повреждение её структуры (генные мутации, хромосомные аберрации), либо эпигеномные изменения. Как первое, так и второе может привести к активации протоонкогенов и последующей опухолевой трансформации клетки.

•  На этапе промоции канцерогенеза осуществляется экспрессия онкогена и формирование фенотипа опухолевой клетки. В результате последовательных циклов пролиферации формируется опухоль.

Этапы вирусного канцерогенеза включают пять последовательных событий: проникновение онкогенного вируса в клетку, включение вирусного онкогена в геном клетки, экспрессию онкогена, превращение клетки в опухолевую, образование опухолевого узла.

АТИПИЗМ ОПУХОЛЕВЫХ КЛЕТОК

Опухолевый атипизм – качественное и количественное отличие свойств опухоли от нормальной (аутологичной) ткани (из которой произошло новообразование), а также от других патологически измененных тканей (например, гипертрофированных, атрофированных, рубцовой).

Опухолевый атипизм проявляется большим числом аномальных признаков, характеризующих рост, метаболизм, структуру и функции новообразованных клеток и опухолевой ткани в целом.

Атипизм роста

Атипизм клеточного роста характеризуется несколькими признаками.

•  Атипизм деления. В опухоли значительно увеличено количество делящихся клеток. Если в большинстве обновляющихся нормальных тканей число пролиферирующих клеток не превышает 5%, то во многих новообразованиях оно составляет 40-60%, а в некоторых – до 100%. Увеличение числа делящихся клеток ведёт к быстрому нарастанию массы опухоли.

•  Атипизм созревания. Заключается в частичном или полном подавлении процесса созревания (дифференцировки) опухолевых клеток.

•  Инвазивный рост. Характеризуется проникновением клеток опухоли в окружающие нормальные ткани, что сопровождается деструкцией этой ткани. Причины инвазивного роста:

♦ уменьшение (в 3-6 раз по сравнению с нормальной тканью) сил сцепления (адгезии) между клетками опухоли, и отделение в связи с этим клеток от опухолевого узла;

♦ увеличение отрицательного заряда внешней поверхности опухолевых клеток в связи с фиксацией на ней отрицательно заряженных радикалов и уменьшением содержания катионов (Ca2+, Na+ и др.); это способствует электростатическому отталкиванию их друг от друга и отдалению от опухолевого узла;

♦ появление у опухолевых клеток способности к амебоидному движению;

♦ синтез клетками опухоли большого количества рецепторов к лигандам молекул адгезии, в том числе – к межклеточному фибронектину, ламинину базальных мембран и внеклеточного матрикса, коллагену, витронектину. Это способствует прикреплению клеток новообразования к неклеточным структурам и перемещению по их поверхности.

Указанные выше процессы обеспечивают как инвазивный рост опухоли, так и метастазирование её клеток (см. ниже).

Метаболический атипизм

Атипизм обмена веществ (метаболический, или биохимический атипизм) заключается в существенном изменении всех видов обмена: нуклеиновых кислот, белков, углеводов, липидов, ионов, жидкости, витаминов. В связи с этим закономерно изменяются и физико-химические параметры опухолевых клеток и новообразования в целом.

•  Атипизм обмена нуклеиновых кислот проявляется увеличением синтеза ДНК и РНК в клетках опухоли. Причина: экспрессия онкогенов, а также некоторых других генов опухолевой клетки.

•  Атипизм белкового обмена проявляется усилением включения аминокислот в реакции протеосинтеза (феномен «опухоль – ловушка азота»), интенсификацией синтеза различных классов белков (структурных, ферментов, онкобелков и других) при одновременном уменьшении или прекращении синтеза ряда иных белков (например, гистонов), изменением антигенного профиля опухолей. Изменения метаболизма нуклеиновых кислот и белка в новообразованиях обеспечивают, с одной стороны, реализацию большинства других проявлений их атипизма, а с другой – способствуют активации механизмов антибластомной защиты организма, обусловленной появлением у клеток опухоли Аг, не свойственных нормальным аутологичным клеткам.

•  Атипизм обмена углеводов проявляется активацией реакций транспорта и утилизации опухолевыми клетками глюкозы – феномен «опухоль – ловушка углеводов», уменьшением относительной доли тканевого дыхания при ресинтезе АТФ, интенсификацией процесса прямого окисления углеводов в пентозофосфатном цикле.

♦ Причины: увеличение содержания или активности ферментов гликолиза в цитозоле, повышение эффективности механизмов транспорта глюкозы в клетки.

♦ Последствия: обеспечение энергией значительно интенсифицированных пластических процессов, существенное повышение устойчивости клеток новообразования к гипоксии и гипогликемии, а, следовательно, – увеличение их выживаемости.

•  Атипизм обмена липидов проявляется значительным усилением утилизации ВЖК и холестерина (опухоль как «ловушка липидов»), активацией синтеза липидных структур клеток, интенсификацией процессов липопероксидации.

♦ Причины: повышение в опухолевых клетках активности или содержания ферментов метаболизма липидов, подавление или истощение в опухолях факторов антиоксидантной защиты.

♦ Значение: энергетическое и пластическое обеспечение усиленных анаболических процессов, реакций синтеза структур интенсивно делящихся опухолевых клеток.

•  Атипизм обмена ионов и жидкости проявляется накоплением воды и ряда ионов, а также изменением соотношения отдельных ионов как в цитозоле опухолевых клеток, так и в межклеточной жидкости. В большинстве опухолей увеличивается [K+] и [Cu2+]. Наряду с этим отмечается уменьшение уровня кальция, а в некоторых бластомах – натрия, магния, цинка и других.

♦ Причины: дефекты клеточных мембран, изменение активности или содержания ферментов транспорта ионов (например, снижение активности Na++-АТФазы, Са2+-АТФазы и др.), повышение осмотического давления в опухолевых клетках, разрушение клеток.

♦ Значение: изменения обмена ионов и воды в новообразованиях способствуют реализации других видов атипизма: роста, функции и структуры.

•  Атипизм обмена витаминов проявляется интенсивным захватом опухолевыми клетками различных витаминов. Показано, что различные опухоли являются «ловушкой» витамина E, обладающего антиоксидантной активностью. По-видимому, это является одним из механизмов повышения устойчивости опухолевых клеток к цитотоксическим воздействиям свободных радикалов.

Для новообразований характерны общие проявления атипизма обмена веществ.

♦ Активное включение в метаболизм опухолей аминокислот, липидов, углеводов, ионов и других веществ (опухоль как «метаболическая ловушка»).

♦ Преобладание в новообразовании анаболических реакций над катаболическими.

♦ Утрата специализации клеток новообразования по сравнению с нормальными – дифференцированными. Это связано с прекращением (или нарушением) синтеза в опухолевых клетках ряда важных для нормального метаболизма ферментов (например, глицерофосфатдегидрогеназы, что ведёт к доминированию гликолитического ресинтеза АТФ).

♦ Снижение эффективности местной регуляции обмена веществ на основе механизма обратной связи.

♦ «Ускользание» метаболизма новообразований от системных (нейрогенных и гормональных) регуляторных влияний. Это вызвано существенными изменениями рецепторного и пострецепторного аппарата регуляции обмена в опухолевых клетках.

♦ Переход опухолевых клеток на более простые варианты регуляции: аутокринный (внутриклеточное управление метаболическими реакциями с помощью веществ, образуемых самой клеткой) и паракринный (управление с помощью веществ – цитокинов, образуемых соседними клетками) механизмов.

В целом указанные и другие проявления атипизма обмена веществ в опухоли создают условия для существенного повышения её «конкурентоспособности» и выживаемости в организме.

Атипизм функций

Обычно функции клеток новообразования снижены или качественно изменены, реже – повышены.

•  Гипофункция. Как правило, отдельные опухолевые клетки и новообразование в целом характеризуются пониженным функционированием.

•  Гиперфункция. Нередко наблюдают признаки гиперфункции как отдельных раковых клеток, так и опухоли в целом. Обычно речь идет о неадекватной потребностям организма продукции каких-либо веществ. Так, некоторые гормональноактивные новообразования желёз внутренней секреции в избытке синтезируют гормоны (например, феохромоцитомы, инсулома и др.).

•  Дисфункция. В некоторых опухолях выявляются признаки, не свойственные для нормальных аутологичных тканей. Например, низкодифференцированные клетки карциномы желудка иногда начинают продуцировать коллаген, рака лёгкого – гормоны аденогипофиза или биогенные амины. Причина этого феномена: экспрессия в опухолевых клетках соответствующих генов, которые неактивны в исходных клетках аутологичных тканей.

В целом, атипизм функции опухолей обусловливает нарушение деятельности тканей и органов, которые они поражают, а также – расстройство жизнедеятельности организма-опухоленосителя.

МЕТАСТАЗИРОВАНИЕ

Метастазирование – перенос клеток бластомы на расстояние от основного (материнского) узла, и развитие опухоли того же гистологического строения в другой ткани или органе.

Это одно из фатальных проявлений атипизма опухолевого роста.

Пути метастазирования

 Лимфогенный (с током лимфы по лимфатическим сосудам) – наиболее частый путь метастазирования опухолей, особенно карцином.

 Гематогенный (с током крови по кровеносным сосудам) путь наиболее характерен для сарком.

 Тканевой или имплантационный. Метастазирование осуществляется при соприкосновении опухолевой клетки с поверхностью нормальной ткани или органа (например, при контакте опухоли желудка с поверхностью брюшины или рака лёгкого с плеврой); при имплантации бластомных клеток, находящихся в жидкостях организма, например, брюшной, плевральной полости, в ликворе, на поверхность органов, соответственно брюшной и грудной полости, спинного и головного мозга.

Нередко опухоли метастазируют по нескольким путям одновременно или последовательно.

Этапы метастазирования

Основными этапами метастазирования являются:

•  Отделение злокачественной клетки от опухоли и её инвазия в стенку лимфатического или кровеносного сосуда (интравазация/

•  Эмболия – циркуляция в лимфатических и кровеносных сосудах опухолевой клетки с последующей её имплантацией на внутренней поверхности эндотелия стенки сосуда.

•  Инвазия клетки бластомы в стенку сосуда и далее – в окружающую их ткань (экстравазация). В последующем клетки пролиферируют и формируют ещё один опухолевый узел – метастаз.

Метастазы нередко характеризуются органной избирательностью (тропностью). Так, клетки рака лёгкого чаще метастазируют в кости, печень, головной мозг; рака желудка – в яичники, ткани дна таза; рака молочной железы – в кости, лёгкие, печень. В основном, тропность метастазирования определяют: специфика обмена веществ в органе, особенности лимфо- и кровообращения, низкая эффективность механизмов антибластомной резистентности, положительный хемотаксис.

РЕЦИДИВИРОВАНИЕ

Рецидивирование – повторное развитие новообразования того же гистологического строения на прежнем месте после его удаления или деструкции.

Причины: опухолевые клетки, оставшиеся в ткани при неполном удалении новообразования (как правило, в связи с предшествующей удалению опухоли инвазией отдельных клеток бластомы в окружающую ткань). Допускается также возможность внедрения в геном нормальной клетки участка ДНК из разрушившихся при хирургическом удалении или хемо- и лучевой терапии опухолевых клеток. Повторное развитие опухоли нередко характеризуется ускоренным её ростом. Это является результатом, с одной стороны, повреждения местных тканей в ходе хирургического или иного вмешательства, а с другой – снижения эффективности факторов системы ИБН.

ОПУХОЛЕВАЯ ПРОГРЕССИЯ

Изменения в геноме, приводящие к трансформации нормальной клетки в опухолевую – лишь первый этап на пути дальнейшей модификации генома. В генетической программе клетки, ставшей опухолевой, постоянно происходят изменения, в основе которых лежат мутации.

•  Фенотипически это проявляется изменением биохимических, морфологических, электрофизиологических и функциональных признаков опухоли.

•  Изменения различных свойств опухолевых клеток происходят независимо друг от друга, поскольку мутации каждого отдельного гена автономны.

•  Сроки изменений свойств разных опухолевых клеток сильно варьируют. В связи с этим признаки их появляются и изменяются без какой-либо закономерной хронологии.

•  При опухолевой прогрессии формируются клоны клеток с самой различной комбинацией признаков (феномен клональной селекции бластомы). В связи с этим разные субклоны клеток одного новообразования могут весьма существенно отличаться друг от друга.

•  Модификации в геноме опухолевой клетки наследуются, т.е. передаются дочерним клеткам.

Указанные выше отклонения генотипа и фенотипа клеток больше характерны для бластом. Они были описаны американским патологом Л. Фулдсом (1969 г.) и названы им феноменом опухолевой прогрессии.

Опухолевая прогрессия – генетически закреплённое, наследуемое опухолевой клеткой и необратимое изменение одного или нескольких её свойств.

Высокая и постоянная изменчивость разных свойств опухолей, с одной стороны, делает их гетерогенными, а с другой – способствует их адаптации к меняющимся условиям: недостатку кислорода, субстратов обмена веществ, а в ряде случаев – к ЛС.

Стадии опухолевого роста

Определение стадии новообразования базируется на оценке его размера и наличии либо отсутствии метастазов. Значение определения стадии опухолевого роста

•  Оценка прогноза. Стадия опухоли имеет важное значение при оценке прогноза. Все классификации опухолей указывают на благоприятный прогноз в 1-й стадии заболевания. В последующих стадиях прогноз прогрессирующе ухудшается.

•  Выбор оптимального лечения. Определение стадии болезни играет решающую роль в последовательности местного, регионарного и системного подходов к лечению, а также при составлении плана комбинированной терапии.

•  Классификация. Существует несколько классификаций опухолей.

Классификация TNM

Классификация TNM используется наиболее широко и включает такие классифицирующие критерии:

 T (Tumor – опухоль) отражает размер и величину новообразования;

 N (Node – узел лимфатический) описывает степень вовлечения в опухолевый процесс лимфатических узлов;

 M (Metastasis – метастазы) указывает на наличие и размер от- далённых метастазов.

Взаимодействие опухоли и организма

Результат взаимодействия опухоли и организма может быть различным.

•  Гибель бластомных клеток. В организме среди большого числа постоянно образующихся различных клеток-мутантов имеются и опухолевые. Однако они, как правило, сразу же обнаруживаются и уничтожаются при участии факторов системы ИБН.

•  Латентное, «дремлющее» состояние опухолевых клеток. Как правило, при этом не наблюдается признаков инвазии клеток бластомы в окружающую нормальную ткань. Такую форму опухолевого роста обозначают как неинвазивную, или «рак на месте» – cancer in situ. Подобное состояние может наблюдаться в течение ряда лет. Оно

может завершиться либо гибелью клеток бластомы (при активации факторов системы ИБН), либо интенсификацией её роста – приобретением способности к инвазии в окружающие ткани, метастазированию и других (при снижении эффективности факторов системы ИБН).

• Прогрессирующее формирование новообразования с нарастанием степени его атипизма. При этом можно выделить местное и общее воздействие опухоли на организм.

❖ Местные эффекты новообразования характеризуются:

❖ нарушением функции поражённых опухолью тканей и органов;

❖ сдавлением окружающих тканей и органов, инвазивным ростом в них и их деструкцией;

❖ расстройством микрогемо- и лимфоциркуляции;

❖ образованием и выделением в межклеточную жидкость метаболитов, в том числе обладающих свойствами БАВ (гормонов, факторов роста, ферментов, иммунодепрессантов и др.), способных вызвать дисфункцию органов;

❖ подавлением активности местных факторов системы ИБН – фагоцитирующих клеток, лимфоцитов, лизоцима, ИФН и других, что способствует прогрессии опухолевого роста.

❖ Системное влияние новообразований проявляется развитием ряда общих неспецифических синдромов. Их называют паранеопластическими.

ПАРАНЕОПЛАСТИЧЕСКИЕ СИНДРОМЫ

К наиболее клинически значимым паранеопластическим синдромам относятся иммунопатологические состояния и кахексия. Также у больных могут выявляться психоневрологические, эндокринопатические и тромбогеморрагические синдромы, анемии и другие. Подробное описание этих паранеопластических синдромов приводится в соответствующих разделах учебника.

Кахексия у онкологических больных обусловлена совокупностью следующих факторов:

❖ поглощением клетками новообразований субстратов метаболизма;

❖ интоксикацией организма продуктами распада опухоли и окружающих её тканей;

❖ избыточным образованием макрофагами и моноцитами организма ФНОа (кахектина);

❖ снижением аппетита, что связывают с опухолевой интоксикацией и развитием у пациентов депрессии;

❖ болевым синдромом (при распаде опухоли, сдавлении ею окружающих тканей или прорастании в них);

♦ кровотечением из распадающейся ткани новообразования или аррозированных стенок сосудов при инфильтрации их опухолью.

Иммунопатологические состояния. У онкологических больных часто наблюдаются различные инфекции вследствие развития у них при- обретённого иммунодефицита. Описаны и другие иммунопатологические состояния, сопровождающие опухолевый рост: аллергические реакции, болезни иммунной аутоагрессии, патологическая толерантность. Причины:

♦ Антигенная перегрузка иммунной системы различными белками, образующимися при распаде опухолей.

♦ Иммуносупрессивное действие избытка глюкокортикоидов, обнаруженного при росте опухолей (что связывают с развитием стрессорного состояния).

♦ Повышение активности T-супрессоров при росте некоторых опухолей (например, гепатом).

♦ Дефицит субстратов, необходимых для пролиферации и дифференцировки иммуноцитов.

Противоопухолевая защита организма

Антибластомная резистентность – свойство организма препятствовать проникновению канцерогенных агентов в клетку, её ядро, а также их действию на геном; обнаруживать и устранять онкогены или подавлять их экспрессию; обнаруживать и разрушать опухолевые клетки, тормозить их рост.

Выделяют антиканцерогенные, антимутационные и антицеллюлярные механизмы противоопухолевой защиты.

АНТИКАНЦЕРОГЕННЫЕ МЕХАНИЗМЫ

Антиканцерогенные механизмы обеспечивают торможение или блокаду проникновения канцерогенов в клетку, её ядро, действие их на геном, а также инактивацию или элиминацию бластомогенных агентов из клетки и организма.

• Механизмы, препятствующие действию химических канцерогенных факторов:

♦ Физико-химическая фиксация (например, глюкуронизация, сульфатирование и удаление из организма с мочой, экскрементами, слюной, жёлчью, потом).

♦ Фагоцитоз канцерогенов, сочетающийся с их инактивацией и разрушением.

♦ Инактивация бластомогенных агентов при помощи АТ и Т-лимфоцитов.

♦ Конкурентная блокада неканцерогенными метаболитами клеточных рецепторов, с которыми способны взаимодействовать истинные бластомогенные вещества.

♦ Разрушение или инактивация канцерогенов в клетках и биологических жидкостях в процессе их метаболизма.

♦ Ингибирование свободных радикалов и гидроперекисей органических и неорганических соединений факторами антиоксидантной защиты.

•  Механизмы, препятствующие действию онкогенных вирусов:

♦ Инактивация вирусов или разрушение вируссодержащих клеток иммуноглобулинами.

♦ Ингибирование ИФН – белками, тормозящими или блокирующими процесс внутриклеточной репликации вирусов.

♦ Обнаружение и разрушение вируссодержащих клеток организма естественными киллерами, цитотоксическими Т-лимфоцитами, мононуклеарными фагоцитами.

•  Механизмы, препятствующие действию канцерогенов физической природы:

♦ Улавливание и инактивация свободных радикалов кислорода, липидов, других органических и неорганических веществ.

АНТИМУТАЦИОННЫЕ МЕХАНИЗМЫ

Антимутационные механизмы обеспечивают обнаружение, устранение или подавление активности онкогенов. Реализуются антимутационные механизмы при участии онкосупрессоров и систем репарации

ДНК.

АНТИЦЕЛЛЮЛЯРНЫЕ МЕХАНИЗМЫ

Антицеллюлярные механизмы обеспечивают обнаружение и разрушение генотипически и фенотипически чужеродных для организма опухолевых клеток или блокаду их роста.

Различают неиммунные (неспецифические) и иммунные (специфические) антицеллюлярные механизмы.

Неиммунные механизмы

Эти механизмы осуществляют надзор за сохранением индивидуального однородного клеточного состава организма. Реализуют эти механизмы киллерные клетки и гуморальные факторы.

•  Киллерные клетки: фагоциты, естественные киллеры, цитотоксические Т-лимфоциты.

•  Гуморальные факторы:

♦ ФНОа увеличивает образование активных форм кислорода и цитокинов с канцеролитическим эффектом (например, ИЛ и ИФН)

фагоцитами в ткани новообразования, активирует программы апоптоза, стимулирует тромбообразование в микрососудах опухоли и развитие ишемии в ней.

♦ Вещества со свойствами аллогенного торможения и деструкции генетически чужеродных клеток: специфические для каждого типа клеток метаболиты, а также некоторые цитокины.

♦ Факторы контактного торможения, подавляющие перемещение и пролиферацию опухолевых клеток (например, а-ЛП плазмы крови и других биологических жидкостей).

Иммунные механизмы

Иммунные механизмы реализуются через клеточные и гуморальные реакции иммунитета.

•  Цитотоксические T-лимфоциты, стимулированные опухолевыми Аг, оказывают цитолитический эффект двояко:

♦ при непосредственном контакте с опухолевой клеткой;

♦ опосредованно (дистантно), путём выделения в биологические жидкости организма различных цитотоксических агентов.

•  Специфические АТ, вырабатываемые плазмоцитами, действуют, в основном, на отдельные бластомные клетки (например, лейкозные). Клетки, находящиеся в составе опухолевого узла, мало доступны для Ig.

Принципы профилактики и терапии опухолей ПРОФИЛАКТИКА

Цель профилактики новообразований: предупредить или снизить действие на клеточный геном канцерогенов, и предотвратить тем самым возникновение опухолевой клетки.

Для достижения этой цели проводят различные мероприятия:

♦ Снижают содержание или устраняют в окружающей человека среде канцерогенные агенты.

♦ Обеспечивают индивидуальную защиту организма (например, с помощью специальной одежды).

♦ Повышают общую и противоопухолевую устойчивость организма путём реализации здорового образа жизни.

♦ Своевременно обнаруживают и ликвидируют так называемые предопухолевые состояния (например, очаги избыточной клеточной пролиферации).

ПРИНЦИПЫ ЛЕЧЕНИЯ ОПУХОЛЕЙ

•  Дифференцированность. Лечение опухолей может быть радикальным и паллиативным.

 Радикальное лечение направлено на ликвидацию опухоли и предполагает возможность полного выздоровления либо длительной ремиссии.

 Паллиативное лечение применяют при невозможности проведения радикальной терапии (например, на поздних стадиях развития опухоли).

•  Комплексность. Врачебные мероприятия должны включать хирургический, лучевой, химиотерапевтический методы терапии и, в некоторых случаях – использование модификаторов биологического ответа (например, иммуномодуляторов).

•  Индивидуальность. Лечение планируют с учётом специфики этиологии и патогенеза опухолевого процесса у конкретного больного. Выбор метода лечения зависит от характера заболевания, стадии, гистологического типа опухоли, возраста больного, наличия сопутствующих заболеваний и цели лечения (радикальное или паллиативное вмешательство).

ГЛАВА 18. НАРКОМАНИИ И ТОКСИКОМАНИИ

Средства, влияющие на психику человека и изменяющие её, обозначают как психоактивные. К психоактивным веществам относят психотропные средства, наркотики, токсикоманические вещества.

Терминология

Психотропные средства – вещества, влияющие на психику человека и применяемые с целью лечения психических заболеваний.

К психотропным средствам относятся психостимуляторы, антидепрессанты, нейролептики, седативные средства, транквилизаторы.

Наркотики, или наркотические средства (от греч. narkotikos – приводящий в оцепенение) – природные и синтетические вещества, оказывающие специфическое влияние на нервную систему и способные вызвать развитие наркомании.

Токсикоманические вещества – химические средства, оказывающие специфическое влияние на нервную систему, но не относящиеся к наркотикам.

Специфическое воздействие на нервную систему наркотических и токсикоманических веществ заключается в их эйфорическом, галлюциногенном, стимулирующем, умиротворяющем и тому подобных эффектах.

Наркомания – типовая форма психосоматической патологии, вызываемая средствами, включёнными в официальный список наркотиков.

Токсикомания – типовая форма психосоматической патологии, формирующаяся при злоупотреблении веществами, не относящимися к наркотикам (в том числе – ЛС и алкоголем).

Нарко- и токсикомании сопровождаются развитием психической и физической зависимости, а также патологическими изменениями личности, развитием комплекса психических, невротических, вегетативных и соматических расстройств.

Этиология наркоманий и токсикоманий Причины

•  Средства, вызывающие наркоманию:

♦ Опиаты (героин, морфин, препараты опийного мака).

♦ Стимуляторы ЦНС (кокаин, марихуана и другие препараты индийской конопли).

♦ Галлюциногены (диэтиламид лизергиновой кислоты, мескалин и др.).

•  Токсикоманические средства, применяемые с немедицинской целью.

♦ Некоторые химические реактивы (например, летучие органические растворители).

♦ Бытовые химические вещества (например, инсектициды, клеи, репелленты).

♦ Этанол.

♦ ЛС, не относящиеся к наркотикам (например, транквилизаторы).

Факторы риска

К факторам риска относятся условия, способствующие повторному применению указанных веществ.

•  Социальные (например, низкий материальный уровень, информационные перегрузки, нестабильные периоды развития общества и личности, стрессы, национальные обычаи, окружающая социальная среда и др.).

•  Психологические (низкая социальная адаптированность, слабый тип ВНД).

•  Биологические (наследственная предрасположенность к применению психоактивных веществ).

Виды наркоманий и токсикоманий НАРКОМАНИИ

В зависимости от применяемого средства выделяют каннабизм, кокаинизм, опийную и вызванную галлюциногенами наркоманию, а также полинаркоманию.

Каннабизм

Каннабизм (от лат. Cannabis sativa – конопля индийская) развивается вследствие применения препаратов каннабиса: марихуаны, анаши, гашиша и др., содержащих психоактивное вещество тетрагидроканнабинол.

•  Эффекты от попадания тетрагидроканнабинола в кровь:

♦ Ощущение общей релаксации.

♦ Эйфория (напоминающая приём малой дозы алкоголя).

♦ Расстройства мышления.

♦ Нарушения концентрации внимания, снижение сообразительности.

♦ Поведенческие расстройства (аналогичные наблюдающимся при алкогольной интоксикации).

•  Метаболизм: в печени тетрагидроканнабинол превращается в соединения с более низким психоактивным эффектом.

Кокаинизм

Кокаинизм развивается при употреблении кокаина, выделяемого из листьев растения Erythroxylon coca.Используется в виде белого кристаллического порошка. Действующее начало – метиловый эфир бензилэкгонина – стимулятор ЦНС, местный анестетик, вазоконстриктор.

•  Механизм действия: блокада трансмембранного переноса биогенных аминов в нейроны, торможение захвата катехоламинов окончаниями адренергических нервных волокон.

•  Эффекты: при применении кокаина улучшается настроение и самочувствие, увеличиваются ЧСС и АД (нередко – развитие гипертензивных реакций), повышается температура тела (иногда – гипертермия).

•  Метаболизм: кокаин разрушается в крови под действием эстераз. Его метаболиты выделяются с мочой.

Опийная наркомания

Опийная наркомания развивается при использовании опиатов: морфина, кодеина (3-метоксиморфина). Их получают из млечного сока опийного мака (Papaver somniferum). Из морфина производят полусинтетические соединения: гидроморфон, диацетилморфин (героин), оксикодон. Синтетический опиоид – тримеперидин.

•  Механизм и эффекты. Опиоиды взаимодействуют с опиатными рецепторами, имеющимися у клеток, в том числе – в нервных. Естественными лигандами для опиатных рецепторов являются эндогенные опиоидные пептиды: энкефалины, эндорфины, динорфин. При взаимодействии опиатов с рецепторами ЦНС развиваются следующие симптомы.

♦ Снижение остроты болевых ощущений. Опосредуется нейронами спинного мозга, таламуса и серого вещества в области сильвиевого водопровода.

♦ Седативный эффект. Реализуется при участии ретикулярной формации и полосатого тела.

♦ Эйфория. Развивается в связи с активацией лимбической системы.

♦ Угнетение дыхания. Обусловлено снижением чувствительности нейронов дыхательного центра к pCO2в крови.

♦ Тошнота, рвота. Эффекты опосредуются нейронами продолговатого мозга.

• Метаболизм. Опиоиды трансформируются в печени (в основном, путём конъюгирования с глюкуроновой кислотой). Выводятся из организма метаболиты опиоидов с калом, а также с мочой.

Наркомания, вызванная галлюциногенами

Диэтиламид лизергиновой кислоты (ЛСД), мескалин и псилоцибин с лечебной целью не используются. При однократном применении оказывают психомиметический эффект и вызывают острые психозы. Повторное их использование быстро приводит к психической зависимости.

Эффекты: ЛСД и мескалин – сильнодействующие и быстродействующие средства. Обычно уже через несколько минут регистрируются тахикардия, артериальная гипертензия, гипертермия, изменения настроения, нарушение реалистичности восприятия окружающей действительности, галлюцинации, синестезии. Могут развиться и состояния немотивированной паники, чреватые антисоциальными действиями (провокацией насилия, разрушением предметов и т.п.).

Полинаркомании

Полинаркомании – одновременное или попеременное использование двух или нескольких наркотических средств.

Особенности: потенцирование токсических эффектов потребляемых наркотиков, усугубление степени физической зависимости, тяжёлые расстройства жизнедеятельности организма, снижение эффективности терапевтических мероприятий.

ТОКСИКОМАНИИ

Токсикомании развиваются при употреблении веществ, не являющихся наркотиками. К наиболее часто употребляемым средствам относятся психотропные вещества, диссоциативные анестетики и этанол.Психотропные вещества в медицине применяют для лечения психозов, неврозов и неврозоподобных расстройств. К этим веществам относятся нейролептики (например, хлорпромазин, хлорпротиксен, галоперидол), антидепрессанты (например, амитриптилин), транквилизаторы (например, медазепам, диазепам). Важно, что эти препараты обладают свойством вызывать психическую и даже физическую зависимость при их длительном применении.

Диссоциативные анестетики (например, фенциклидин) используются в ветеринарии для кратковременного обездвиживания животного. Они вызывают общее психомоторное возбуждение, аналгезию, дизартрию, нарушение координации движений и представлений о собственном теле, отчуждение от окружающих, дезорганизацию мышления, психотические состояния.

Этанол

Этанол является причиной наиболее распространённой у населения многих стран токсикомании – алкоголизма.

Алкоголизм – вид токсикомании, характеризующийся патологическим влечением к употреблению спиртных напитков и формированием физической зависимости с развитием абстинентного (похмельного) синдрома в случае прекращения приё- ма этанола.

При хроническом алкоголизме наблюдается деградация личности, стойкие соматические и психоневрологические расстройства. Распространённость. До 20% взрослого населения России страдает алкоголизмом. Чаще он формируется в возрасте 20-29 лет. Зависимость от пола. Мужчины болеют почти в 5 раз чаще, однако, у женщин алкоголизм развивается быстрее.

•  Факторы риска

♦ Повторное употребление алкоголя и других психотропных веществ, в том числе никотина.

♦ Алкоголизм в семейном анамнезе (риск развития алкоголизма у детей алкоголика – около 50%).

♦ Принадлежность к мужскому полу в сочетании с молодым возрастом, отсутствием семьи.

♦ Систематическое употребление алкоголя в количестве 5 и более алкогольных доз (60 мл чистого этилового спирта) по крайней мере 1 раз в неделю.

♦ Повышенная чувствительность к алкоголю.

♦ Неблагополучие общества (экономическое, идеологическое, нравственное).

•  Метаболизм этанола

♦ После приёма этанол быстро всасывается из желудка и тонкой кишки в кровь и циркулирует в ней, легко проникая в клетки. 5-10% этанола выделяется с мочой, калом, потом, молоком, выдыхаемым воздухом; 90% окисляются до воды и CO2.

♦ Окисление этанола происходит преимущественно в печени сначала до ацетальдегида (реакцию катализируют алкогольдегидрогеназы), а на следующих этапах ферменты цикла Кребса расщепляют ацетальдегид до воды и CO2. Ацетальдегид циркулирует в организме, легко проникает через клеточные мембраны и очень токсичен. Токсичность алкоголя определяется именно эффектами ацетальдегида.

♦ Изменение функций ЦНС определяется содержанием этанола в крови: 50 мг% – седативный эффект; 50-150 мг% – нарушение координации движений; 150-200 мг% – тяжёлая интоксикация, возбуждение; 300-400 мг% – бессознательное состояние; >400 мг% – потенциально смертельная концентрация.

Общий патогенез нарко- и токсикоманий

Наркотики и токсикоманические вещества имеют различия в структуре и механизме действия. Вместе с тем формирование психической и физической зависимости, реализация их эффектов в организме имеет ряд общих патогенетических закономерностей.

Патологическое влечение к повторному употреблению психоактивного вещества

•  Приём наркотика или токсикоманического вещества вызывает индивидуальные, более или менее выраженные, положительные эмоции. Это побуждает к повторному использованию данного вещества (феномен «подкрепления»).

•  Каждый эпизод искусственно вызванного состояния комфорта способствует формированию патологической системы. Функция этой системы имеет целью приём очередной (подкрепляющей) порции вещества для достижения психологического и физического комфорта.

•  К основным компонентам патологической системы подкрепления относятся структуры ствола мозга (в их числе locus ceruleus – голубоватое место, располагающееся на дне четвёртого желудочка), лимбическая система. Медиаторами патологической системы подкрепления являются дофамин, норадреналин, серотонин, эндогенные опиоиды.

Формирование психической и физической зависимости

•  Психическая зависимость – состояние, характеризующееся развитием дискомфорта (например, депрессии, тревоги, глубокой тоски) при прекращении поступления в организм психоактивного вещества, которое обеспечивает чувства удовлетворения, психического и физического подъёма.

•  Физическая зависимость – состояние, характеризующееся выраженными острыми нарушениями физического состояния, глубокими расстройствами деятельности ЦНС, органов, тканей и их систем при прекращении поступления в организм психоактивного вещества.

•  Синдром абстиненции – состояние, развивающееся при прекращении введения в организм психоактивного вещества на фоне физической зависимости от него. Острый период абстиненции длится до 4-5 нед. Характеризуется комплексом признаков психических, вегетативных и физических расстройств.

Изменение психического состояния: беспокойство, неудовлетворённость, тоска, дискомфорт, злобность.

Вегетативные и физические расстройства: мышечные боли, судороги мышц ног, мышечная слабость, тошнота, рвота, понос, боли в желудке и кишечнике, колебания АД, потливость, тахикардия, бессонница.

Развитие толерантности к психоактивному веществу

Патогенетическая основа толерантности – модифицирующее влияние психоактивных веществ на клеточные мембраны, рецепторные структуры клеток и ферменты.

•  Оптимальное функционирование нейрона определяется физикохимическим состоянием мембран, их ионных каналов, связанных с ними рецепторов и ферментов.

•  Повторный приём наркотиков и токсичных веществ увеличивает вязкость мембран клеток, в том числе – нейронов. Возрастает их ригидность (в определённой мере это связано с накоплением в мембранах избытка холестерина, а также пальмитиновой и других ВЖК).

•  Повышение плотности биомембран увеличивает их устойчивость (толерантность) к действию психоактивных веществ.

•  Возрастание жёсткости мембран препятствует подвижности в них рецепторов, что делает их менее доступными для нейромедиаторов системы подкрепления при отсутствии психоактивного вещества.

Стадии нарко- и токсикоманий НАЧАЛЬНАЯ СТАДИЯ

Начальная стадия (психического влечения к психоактивному веществу) характеризуется развитием комплекса синдромов.

♦ Астенический синдром. Он проявляется повышенной раздражительностью, несдержанностью, быстрой физической и умственной утомляемостью, ухудшением памяти, расстройствами чувствительности (например, гипо-, гипер- и парестезии), нарушениями сна.

♦ Синдром психической зависимости от психоактивного вещества. Обусловлен истощением запасов нейромедиаторов в нейронах.

♦ Синдром повышенной толерантности к веществу. Для поддержания комфортного состояния требуется постоянное увеличение дозы вещества.

♦ Синдром адаптации к негативным эффектам психоактивного вещества. При этом отмечается нивелирование и исчезновение неприятных реакций (тошноты, рвоты, псевдоаллергических реакций, головной боли и др.), возникавших ранее при его приёме.

СТАДИЯ ФИЗИЧЕСКОЙ ЗАВИСИМОСТИ

Стадия физической зависимости (наркоили токсикоманическая, субкомпенсации) также характеризуется формированием своеобразного комплекса патогенных синдромов.

♦ Синдром физической зависимости от вещества. На этой стадии организм адаптирован к наличию в нём определённого уровня психоактивного вещества. При снижении его концентрации или прекращении поступления в организм развивается абстинентный синдром.

♦ Абстинентный синдром. Является следствием накопления дофамина и других биогенных аминов в ткани мозга (особенно в структурах «системы подкрепления») при существенном снижении содержания психоактивного вещества в организме. Другой механизм – изменения активности (обычно понижение) других медиаторных систем мозга: опиоидергической, серотонинергической, холинергической, ГАМКергической.

♦ Синдром прогрессирующего повышения толерантности к психоактивному веществу. Больные при нём увеличивают дозу вещества, вплоть до токсической.

ФИНАЛЬНАЯ СТАДИЯ

Финальная стадия (энцефалопатическая, декомпенсации) представляет собой комплекс следующих синдромов:

♦ Синдром физической зависимости. Он усугубляется вследствие того, что психоактивное средство или его метаболиты становятся компонентами и регуляторами обмена веществ в нервной ткани и многих органах.

♦ Синдром сниженной толерантности к психоактивному веществу. Потребление этого вещества становится более редким, но обязательным; доза препарата уменьшается; употребление препарата не сопровождается устранением дискомфорта и развитием эйфории.

♦ Синдром полиорганной недостаточности. Он обусловлен грубыми метаболическими и структурными изменениями в органах и тканях. Развиваются прогрессирующие диспептические расстройства и синдромы мальабсорбции с развитием кахексии; дыхательная, печёночная, почечная недостаточность и недостаточность кровообращения; невропатии, энцефалиты. ♦ Синдром деградации личности. Характеризуется утратой индивидуальных личностных черт; снижением интеллекта; утратой интереса к окружающей действительности. Финальная стадия токсико- и наркомании характеризуется высокой смертностью. Основные причины её: сердечная недостаточность и почечная недостаточность, инфекционные заболевания.

ГЛАВА 19. АДАПТАЦИОННЫЙ ПРОЦЕСС. СТРЕСС

АДАПТАЦИЯ

Адаптация – системный, стадийно развивающийся процесс приспособления организма к факторам необычной для него силы, длительности или характера (стрессовым факторам).

Адаптационный процесс характеризуется фазными изменениями жизнедеятельности, обеспечивающими повышение резистентности организма к воздействующему на него фактору, а нередко и к раздражителям другого характера (феномен перекрёстной адаптации). Впервые представление об адаптационном процессе было сформулировано Селье в 1935-1936 гг. Г. Селье выделял общую и местную форму процесса.

•  Общий (генерализованный, системный) адаптационный процесс характеризуется вовлечением в ответ всех или большинства органов и физиологических систем организма.

•  Местный адаптационный процесс наблюдается в отдельных тканях или органах при их альтерации. Однако, местный адаптационный синдром также формируется при большем или меньшем участии всего организма.

Если действующий стрессовый фактор характеризуется высокой (разрушительной) интенсивностью или чрезмерной длительностью, то развитие процесса адаптации может сочетаться с нарушением жизнедеятельности организма, возникновением различных болезней или даже смертью его.

Адаптация организма к стрессовым факторам характеризуется активацией специфических и неспецифических реакций и процессов.

•  Специфический компонент развития адаптации обеспечивает приспособление организма к действию конкретного фактора (например, к гипоксии, холоду, физической нагрузке, значительному избытку или недостатку какого-либо вещества и т.п.).

•  Неспецифический компонент механизма адаптации заключается в общих, стандартных, неспецифических изменениях в организме, возникающих при воздействии любого фактора необычной силы, характера или длительности. Эти изменения описаны как стресс.

Этиология адаптационного синдрома

Причины адаптационного синдрома подразделяют на экзогенные и эндогенные. Наиболее часто адаптационный синдром вызывают экзогенные агенты различной природы.

•  Экзогенные факторы:

♦ Физические: значительные колебания атмосферного давления, температуры, существенная повышенная или пониженная физическая нагрузка, гравитационные перегрузки.

♦ Химические: дефицит или повышенное содержание кислорода во вдыхаемом воздухе, голодание, недостаток или избыток поступающей в организм жидкости, интоксикация организма химическими веществами.

♦ Биологические: инфицирование организма и интоксикация экзогенными БАВ.

•  Эндогенные причины:

♦ Недостаточность функций тканей, органов и их физиологических систем.

♦ Дефицит или избыток эндогенных БАВ (гормонов, ферментов, цитокинов, пептидов и др.).

Условия, влияющие на возникновение и особенности развития адаптационного синдрома:

•  Состояние реактивности организма. Именно от неё во многом зависит как возможность (или невозможность) возникновения, так и особенности динамики этого процесса.

•  Конкретные условия, при которых патогенные факторы действуют на организм (например, высокая влажность воздуха и наличие ветра усугубляет патогенное действие низкой температуры; недостаточная активность ферментов микросом печени ведёт к накоплению в организме токсичных продуктов обмена веществ).

Стадии адаптационного синдрома СТАДИЯ ЭКСТРЕННОЙ АДАПТАЦИИ

Первая стадия адаптационного синдрома – срочной (экстренной) адаптации – заключается в мобилизации предсуществующих в организме компенсаторных, защитных и приспособительных механизмов. Это проявляется триадой закономерных изменений.

•  Значительной активацией «исследовательской» поведенческой деятельности индивида, направленной на получение максимума информации о чрезвычайном факторе и последствиях его действия.

•  Гиперфункцией многих систем организма, но преимущественно тех, которые непосредственно (специфически) обеспечивают приспособление к данному фактору. Эти системы (физиологические и функциональные) называют доминирующими.

•  Мобилизацией органов и физиологических систем (сердечно-сосудистой, дыхательной, крови, ИБН, тканевого метаболизма и др.), которые реагируют на воздействие любого чрезвычайного для данного организма фактора. Совокупность этих реакций обозначают как неспецифический – стрессорный компонент механизма адаптационного синдрома.

В основе развития срочной адаптации лежит несколько взаимосвязанных механизмов.

♦ Активация нервной и эндокринной систем. Приводит к увеличению в крови и других жидкостях организма гормонов и нейромедиаторов: адреналина, норадреналина, глюкагона, глюко- и минералокортикоидов, тиреоидных гормонов и др. Они стимулируют катаболические процессы в клетках, функцию органов и тканей организма.

♦ Увеличение содержания в тканях и клетках различных местных «мобилизаторов» функций – Ca2+, ряда цитокинов, пептидов, нуклеотидов и других. Они активируют протеинкиназы и процессы, катализируемые ими (липолиз, гликолиз, протеолиз и др.).

♦ Изменение физико-химического состояния мембранного аппарата клеток, а также активности ферментов. Это достигается за счёт интенсификации СПОЛ, активации фосфолипаз, липаз и протеаз, что облегчает реализацию трансмембранных процессов, изменяет чувствительность и количество рецепторных структур.

♦ Значительное и длительное повышение функции органов, расхода субстратов обмена веществ и макроэргических нуклеотидов, относительная недостаточность кровоснабжения тканей. Это может сопровождаться развитием в них дистрофических изменений и даже некроза. В результате, на стадии срочной адаптации возможно развитие болезней, болезненных состояний и патологических процессов (например, язвенных изменений в ЖКТ, артериальной гипертензии, иммунопатологических состояний, нервно-психических расстройств, инфаркта миокарда и др.), и даже гибель организма.

Биологический смысл реакций, развивающихся на стадии срочной адаптации, заключается в создании условий, необходимых для того, чтобы организм «продержался» до этапа формирования его устойчивой повышенной резистентности к действию экстремального фактора.

СТАДИЯ ПОВЫШЕННОЙ РЕЗИСТЕНТНОСТИ

Вторая стадия адаптационного синдрома – повышенной устойчивой резистентности, или долговременной адаптации организма к действию чрезвычайного фактора. Она включает следующие процессы.

•  Формирование состояния устойчивости организма как к конкретному агенту, вызвавшему адаптацию, так нередко и к другим факторам.

•  Увеличение мощности и надёжности функций органов и физиологических систем, обеспечивающих адаптацию к определённому фактору. В железах внутренней секреции, эффекторных тканях и органах наблюдается возрастание числа или массы структурных элементов (т.е. гипертрофия и гиперплазия их). Комплекс таких изменений обозначают как системный структурный след процесса адаптации.

•  Устранение признаков стрессорных реакций и достижение состояния эффективного приспособления организма к чрезвычайному фактору, вызвавшему процесс адаптации. В результате формируется надёжная, устойчивая система адаптации организма к меняющимся условиям среды.

•  Дополнительное энергетическое и пластическое обеспечение клеток доминирующих систем. Это сочетается с лимитированием снабжения кислородом и субстратами метаболизма других систем организма.

При повторном развитии процесса адаптации возможна гиперфункция и патологическая гипертрофия клеток доминирующих систем. Это приводит к нарушению их пластического обеспечения, угнетению синтеза в них нуклеиновых кислот и белка, расстройствам обновления структурных элементов клеток и их гибели.

СТАДИЯ ИСТОЩЕНИЯ

Эта стадия не является обязательной. При развитии стадии истощения (или изнашивания) процессы, лежащие в её основе, могут обусловить развитие болезней и даже гибель организма. Такие состояния обозначают как болезни адаптации (точнее, её нарушения) – дезадаптации. Важным и необходимым компонентом адаптационного синдрома является стресс. Вместе с тем, в большом числе случаев он может развиваться и как самостоятельный процесс.

СТРЕСС

Стресс – генерализованный неспецифический ответ организма на воздействие различных факторов необычных характера, силы или длительности.

Стресс характеризуется стадийной неспецифической активацией защитных процессов и повышением общей резистентности организма с возможным последующим снижением её и развитием патологических процессов и реакций.

Причинами стресса являются те же факторы, что и вызывающие адаптационный синдром (см. выше).

ОСОБЕННОСТИ СТРЕССА

•  Воздействие любого чрезвычайного фактора вызывает в организме два взаимосвязанных процесса:

♦ специфическую адаптацию к данному фактору;

♦ активацию стандартных, неспецифических реакций, развивающихся при воздействии любого необычного для организма воздействия (собственно стресс).

•  Стресс – обязательное звено процесса срочной адаптации организма к воздействию любого чрезвычайного фактора.

•  Стресс предшествует развитию стадии устойчивой резистентности адаптационного синдрома и способствует формированию этой стадии.

•  При развитии повышенной резистентности организма к чрезвычайному фактору устраняется нарушение гомеостаза, и стресс прекращается.

•  Если по каким-либо причинам повышенная резистентность организма не формируется (и в связи с этим сохраняются или даже нарастают отклонения параметров гомеостаза организма), то состояние стресса также сохраняется.

Стадии стресса

В процессе развития стресса выделяют стадии тревоги, резистентности и истощения.

СТАДИЯ ТРЕВОГИ

Первая стадия стресса – общая реакция тревоги.

•  В ответ на стрессовые факторы усиливается поток афферентных сигналов, изменяющих деятельность корковых и подкорковых нервных центров регуляции жизнедеятельности организма.

•  В нервных центрах экстренно формируется программа эфферентных сигналов, которая реализуется с участием нервных и гуморальных механизмов регуляции.

•  Благодаря этому на стадии тревоги закономерно активируются симпатоадреналовая, гипоталамо-гипофизарно-надпочечниковая системы (им принадлежит ключевая роль в развитии стресса), а также – железы внутренней секреции (щитовидная, поджелудочная и др.).

•  Указанные механизмы, являясь неспецифическим компонентом стадии срочного (экстренного) приспособления общего адаптационного синдрома, обеспечивают уход организма от действия повреждающего фактора или от экстремальных условий существования; формирование повышенной устойчивости к альтерирующему влиянию; необходимый уровень функционирования организма даже при продолжающем воздействии чрезвычайного агента.

•  На стадии тревоги усиливается транспорт энергетических, метаболических и пластических ресурсов к доминирующим органам. Значительно выраженная или длительная стадия тревоги может обусловить развитие дистрофических изменений, гипотрофии и некроза отдельных органов и тканей.

СТАДИЯ ПОВЫШЕННОЙ РЕЗИСТЕНТНОСТИ

На второй стадии стресса нормализуются функционирование органов и их систем, интенсивность обмена веществ, уровни гормонов и субстратов метаболизма. В основе указанных изменений лежит гипертрофия или гиперплазия структурных элементов тканей и органов, обеспечивающих развитие повышенной резистентности организма: желёз внутренней секреции, сердца, печени, кроветворных органов и других.

Если причина, вызвавшая стресс, продолжает действовать, а вышеперечисленные механизмы становятся недостаточными, развивается следующая стадия стресса – истощения.

СТАДИЯ ИСТОЩЕНИЯ

Эта стадия стресса характеризуется расстройством механизмов нервной и гуморальной регуляции, доминированием катаболических процессов в тканях и органах, нарушением их функционирования. В конечном итоге снижается общая резистентность и приспособляемость организма, нарушается его жизнедеятельность.

•  К этим отклонениям приводит комплекс неспецифических патогенных изменений в различных органах и тканях организма.

♦ Избыточная активация фосфолипаз, липаз и СПОЛ повреждает липидсодержащие компоненты клеточных мембран и связанные с ними ферменты. Как следствие – расстраиваются трансмембранные и внутриклеточные процессы.

♦ Высокая концентрация катехоламинов, глюкокортикоидов, АДГ, СТГ обусловливает чрезмерную мобилизацию глюкозы, липидов и белковых соединений в различных тканях. Это приводит к дефициту веществ, развитию дистрофических процессов и даже некрозу клеток.

•  Перераспределение кровотока в пользу доминирующих систем. В других органах отмечается гипоперфузия, что сопровождается развитием дистрофий, эрозий и язв в них.

•  Снижение эффективности системы ИБН и формирование иммунодефицитов при избыточно длительном, выраженном, а также повторном стрессе.

Виды стресса

По биологической значимости стресс можно разделить на адаптивный и патогенный.

Адаптивный стресс

Если активация функций органов и их систем у данного индивида в условиях действия стрессорного агента предотвращает нарушения гомеостаза, то может сформироваться состояние повышенной резистентности организма. В подобных случаях стресс имеет адаптивное значение. При действии на организм в адаптированном его состоянии того же самого чрезвычайного фактора, как правило, не наблюдается расстройств жизнедеятельности. Более того, повторное воздействие стрессорного агента умеренной силы через определённые промежутки времени (необходимые для реализации восстановительных процессов) формируют устойчивую, длительно повышенную резистентность организма к этому и другим воздействиям.

Неспецифическое адаптирующее свойство повторного действия различных стрессорных факторов умеренной силы (гипоксии, физической нагрузки, охлаждения, перегревания и других) используют для искусственного повышения устойчивости организма к стрессорным факторам и предупреждения их повреждающего действия. С этой же целью проводят курсы так называемых неспецифических лечебнопрофилактических процедур: пиротерапии, обливания прохладной или горячей водой, различные варианты душа, аутогемотерапии, физических нагрузок, периодических воздействий умеренной гипобарической гипоксии (в барокамерах) и др.

Патогенный стресс

Чрезмерно длительное или частое повторное воздействие сильного стрессорного агента на организм, не способного предотвратить на-

рушение гомеостаза, может привести к значительным расстройствам жизнедеятельности и развитию экстремального (коллапса, шока, комы) или даже терминального состояния.

Антистрессорные механизмы

В большинстве случаев развитие стресса, даже значительно выраженного, не вызывает повреждения органов и расстройства жизнедеятельности организма. Более того, часто сам стресс быстро устраняется. Это означает, что при воздействии чрезвычайного агента в организме, наряду с активацией механизма развития стресса, начинают действовать факторы, ограничивающие его интенсивность и продолжительность. Совокупность их обозначают как стресс-лимитирующие факторы, или антистрессорные механизмы организма.

МЕХАНИЗМЫ РЕАЛИЗАЦИИ АНТИСТРЕССОРНЫХ РЕАКЦИЙ

Ограничение стресса и его патогенных эффектов в организме реализуется при участии комплекса взаимосвязанных факторов. Они активируются на уровне как центральных механизмов регуляции, так и периферических (исполнительных) органов.

•  В головном мозге антистрессорные механизмы реализуются при участии ГАМК-ергических, дофаминергических, опиоидергических, серотонинергических нейронов и, возможно, нейронов иных химических спецификаций.

•  В периферических органах и тканях стресс-лимитирующий эффект оказывают Пг, аденозин, ацетилхолин, факторы антиоксидантной защиты тканей и органов. Эти и другие вещества предотвращают или существенно снижают стрессорную интенсификацию свободнорадикальных процессов, высвобождение и активацию гидролаз лизосом, предупреждают стресс-зависимые ишемию органов, язвенные поражения ЖКТ, дистрофические изменения в тканях.

Принципы коррекции стресса

Фармакологическая коррекция стресса базируется на принципах оптимизации функций систем, инициирующих стресс, а также предупреждении, уменьшении или устранении изменений в тканях и органах в условиях развивающегося стресса.

•  Оптимизация функций стресс-инициирующих систем организма (симпатикоадреналовой, гипоталамо-гипофизарно-надпочечниковой).При воздействии стрессорных факторов возможно развитие неадекватных реакций: чрезмерных либо недостаточных. В значительной мере выраженность этих реакций зависит от их эмоционального восприятия.

♦ Для предупреждения неадекватных стрессорных реакций применяют различные классы транквилизаторов. Последние способствуют устранению состояния астении, раздражительности, на- пряжённости, страха.

♦ С целью нормализации состояния стресс-инициирующих систем используют препараты блокирующие их эффекты при их избыточной активации (адренолитики, адреноблокаторы, «антагонисты» кортикостероидов) или потенцирующие их при недостаточности этих систем (катехоламины, глюко- и минералокортикоиды).

• Коррекция процессов, развивающихся в тканях и органах при стрессе, достигается двумя путями.

♦ Активацией центральных и периферических антистрессорных механизмов (применением препаратов ГАМК, антиоксидантов, Пг, аденозина или стимуляцией их образования в тканях).

♦ Блокированием механизмов повреждения клеток и неклеточных структур (нарушений энергообеспечения, альтерации мембран и ферментов, дисбаланса ионов и воды, изменений генетической программы клеток и механизмов её реализации, расстройств местных механизмов регуляции и др.).

ГЛАВА 20. ЭКСТРЕМАЛЬНЫЕ И ТЕРМИНАЛЬНЫЕ СОСТОЯНИЯ

В течение жизни человек подвергается влиянию различных экзогенных и эндогенных факторов чрезвычайной силы, продолжительности или необычного, непривычного характера. Действие экстремальных факторов приводит к развитию либо адаптации к данному фактору, либо – экстремального (критического, неотложного) состояния.

Экстремальные состояния – общие тяжёлые состояния организма, которые развиваются под действием экстремальных факторов и характеризуются значительными расстройствами жизнедеятельности организма, чреватыми смертью.

К наиболее частым и клинически значимым экстремальным состояниям относят коллапс, шок и кому.

Иногда к экстремальным состояниям относят отравления. Однако, как правило, отравления, особенно при их тяжёлом течении, являются причиной того или иного экстремального состояния (токсогенные варианты коллапса, шока, комы).

Терминальные состояния – крайне тяжёлые общие состояния организма, которые при отсутствии специализированной врачебной помощи приводят к летальному исходу.

Терминальные состояния являются следствием неблагоприятного течения экстремальных состояний. К терминальным состояниям относят все стадии умирания – преагонию, агонию, клиническую смерть, а также начальный этап состояния после успешной реанимации.

Сравнительная характеристика экстремальных и терминальных состояний

Экстремальные и терминальные состояния имеют ряд общих признаков: общие причины, сходные ключевые звенья патогенеза, пограничное положение между жизнью и смертью, чреваты гибелью организма, требуют неотложной врачебной помощи.

Вместе с тем, экстремальные и терминальные состояния имеют ряд существенных отличий (табл. 20-1). В основе терминальных состояний лежат тяжёлые, а, следовательно – прогностически неблагоприятные процессы. В отличие от этого, при некоторых экстремальных состояниях возможна активация процессов адаптации и «выход» организма из этих состояний.

Таблица 20-1. Отличия экстремальных и терминальных состояний

http://www.studmedlib.ru/cgi-bin/mb4?hide_Cookie=yes&usr_data=gd-image(doc,ISBN9785970414798-A019,pic_0028.png,-1,,00000000,)

Общая этиология экстремальных состояний

Экстремальные факторы подразделяют на экзогенные и эндогенные.

•  Экзогенные экстремальные факторы характеризуются высокой (разрушительной) интенсивностью или чрезмерной длительностью воздействия.

•  Эндогенные (неблагоприятное, тяжёлое течение болезней и болезненных состояний):

♦ недостаточность функций органов и физиологических систем;

♦ значительная кровопотеря;

♦ избыток продуктов иммунных или аллергических реакций;

♦ существенный дефицит или избыток БАВ либо их эффектов;

♦ психические травмы и перенапряжения.

Условия, способствующие возникновению экстремальных состояний

•  Факторы, потенцирующие эффекты экстремальных агентов. Например, последствия кровопотери усугубляются в условиях повышенной температуры воздуха; сердечная недостаточность при выполнении чрезмерной физической нагрузки может привести к кардиогенному шоку и т.д.

•  Реактивность организма. Гиперили гипоергическое состояние организма (в отличие от нормергического) существенно облегчает возникновение, усугубляет течение и исходы экстремального состояния.

Патогенез и проявления экстремальных состояний

В динамике экстремальных состояний выделяют три стадии: активации адаптивных механизмов, истощения и недостаточности их, экстремального регулирования организма.

СТАДИЯ АКТИВАЦИИ АДАПТИВНЫХ МЕХАНИЗМОВ

ОРГАНИЗМА

Эта стадия характеризуется закономерной генерализованной активацией функций тканей, органов и их систем. Это лежит в основе развития адаптивных реакций разной степени выраженности и специфичности. Принципиально все эти реакции можно подразделить на две категории.

•  Обеспечивающие специфическую адаптацию к данному конкретному экстремальному фактору (см. раздел «Адаптация», глава 19).

•  Реализующие неспецифические, стандартные процессы, развивающиеся при действии любого экстремального воздействия, т.е. стресс (см. «Стресс», глава 19).

СТАДИЯ НЕДОСТАТОЧНОСТИ АДАПТИВНЫХ МЕХАНИЗМОВ

•  Причины: недостаточная эффективность адаптивных реакций и нарастание повреждающего действия экстремального агента.

•  Звенья патогенеза:

♦ Прогрессирующее снижение эффективности реакций приспособления, компенсации, защиты и репарации.

♦ Нарастающее расстройство физиологических функций и распад функциональных систем организма.

♦ Нарушение обмена веществ и физико-химических процессов.

♦ Повреждение субклеточных структур, клеток и нарушение межклеточного взаимодействия.

•  Порочные круги могут формироваться при всех экстремальных состояниях, хотя и с разной частотой.

♦ При коллапсе, шоке и коме наблюдается перераспределение кровотока. Большое количество крови скапливается в расширенных венозных и артериальных сосудах брюшной полости, лёгких, подкожной клетчатки. Это значительно уменьшает МОК и, следовательно, приток крови к сердцу. Обусловленное этим снижение сердечного выброса крови приводит к ещё большему уменьшению МОК и усугублению состояния пациента.

♦ Феномен активации СПОЛ. Гипоксия, развивающаяся при всех экстремальных состояниях, обусловливает подавление активности систем антиоксидантной защиты тканей. Это ведёт к интенсификации образования в них активных форм кислорода и продуктов СПОЛ, которые повреждают ферменты тканевого дыхания, гликолиза, пентозофосфатного цикла. В итоге гипоксия усугубляется и порочный круг замыкается.

•  Проявления стадии недостаточности механизмов адаптации.

♦ Расстройства функций нервной системы. Характеризуются нарушениями чувствительности, контроля движений, интеграции деятельности органов, тканей и их систем, ВНД.

♦ Нарушение деятельности ССС. Проявляется аритмиями, признаками коронарной и сердечной недостаточности, расстройствами центральной, органной и микрогемоциркуляции.

♦ Отклонения в системе крови и гемостаза. Обусловливают нарушения объёма, вязкости и текучести крови; формирование агрегатов её форменных элементов, феномена сладжа, тромбов; развитие ДВС-синдрома, нередко приводящего к гибели пациента.

♦ Расстройства системы внешнего дыхания. Как правило, развиваются периодические формы дыхания (Биота, Чейна-Стокса, Куссмауля), а при тяжёлом течении – его полное прекращение (апноэ).

♦ Недостаточность функций почек. Проявляется олигоили анурией, нарушением фильтрации, экскреции, секреции и других процессов в них.

♦ Расстройство функций других органов и физиологических систем: печени, ЖКТ, эндокринных желёз и др.

♦ Значительные отклонения от нормы показателей гомеостаза, в том числе жизненно важных, критических. Являются закономерным проявлением недостаточности функций органов и их систем.

СТАДИЯ ЭКСТРЕМАЛЬНОГО РЕГУЛИРОВАНИЯ ЖИЗНЕДЕЯТЕЛЬНОСТИ ОРГАНИЗМА

•  Причины: нарастание степени и масштаба первичной и вторичной альтерации организма, прогрессирующая недостаточность механизмов адаптации.

•  Ключевые звенья патогенеза:

♦ Нарастающая гипо- и деафферентация центральных и периферических нервных структур, выход из-под нервных влияний исполнительных органов и тканей.

♦ Распад функциональных систем, обеспечивавших поддержание жизненноважных параметров организма.

♦ Переход на элементарный – метаболический уровень регуляции органов и тканей.

• При нарастании указанных изменений развивается терминальное состояние и наступает смерть. Однако, проведение эффективного лечения позволяет блокировать прогрессирование расстройств, восстановить и даже нормализовать состояние пострадавшего.

Принципы терапии экстремальных состояний

Неотложные лечебные мероприятия при экстремальных состояниях базируются на реализации четырёх основных принципов: этиотропного, патогенетического, саногенетического и симптоматического.Этиотропное лечение направлено на прекращение или снижение силы и масштаба патогенного действия экстремального агента. Это достигается разными методами, зависящими от типа неотложного состояния (остановка кровотечения, прекращение действия низкой или высокой температуры, нормализация содержания кислорода во вдыхаемом воздухе и пр.).

Патогенетический принцип имеет целью блокирование механизмов развития экстремальных состояний путём воздействия на ключевые звенья патогенеза (расстройства кровообращения, дыхания, гипоксию, сдвиги КЩР, дисбаланс ионов, активацию процессов липопероксидации и др.).

Саногенетическая терапия имеет целью активацию или потенцирование механизмов защиты, компенсации, приспособления и возмещения повреждённых или утраченных структур и функций организма. Обеспечивается путём стимуляции функций сердца, дыхания, почек, печени и других органов и тканей; активации процессов репарации, систем дезинтоксикации, ликвидации избытка кислородных и липидных радикалов; потенцированием пластических реакций и других. Симптоматический принципподразумевает устранение неприятных, тягостных, усугубляющих состояние пациентов симптомов и ощущений: головной боли, чувства страха смерти, каузалгий, гипоили гипертензивных реакций и других.

КОЛЛАПС

Коллапс – острое общее патологическое состояние, возникающее в результате значительного несоответствия ОЦК ёмкости сосудистого русла.

Характеризуется недостаточностью кровообращения, низким артериальным давлением, первично циркуляторной гипоксией, расстройством функций тканей, органов и их систем.

ЭТИОЛОГИЯ

Причины коллапса

Непосредственная причина коллапса – быстро развивающееся значительное превышение ёмкости сосудистого русла по сравнению с ОЦК. В зависимости от причин, нарушающих это соответствие, выделяют несколько разновидностей коллапса: кардиогенный, гиповолемический, вазодилатационный, постгеморрагический, инфекционный, токсический, ортостатический и др.

•  При снижении величины сердечного выброса развивается кардиогенный коллапс. Это наблюдается при острой сердечной недостаточности; состояниях, затрудняющих приток крови к сердцу (при стенозах клапанных отверстий, эмболии или стенозе сосудов системы лёгочной артерии).

•  При уменьшении ОЦК развивается гиповолемический коллапс. К этому приводят острое массивное кровотечение, быстрое и значительное обезвоживание организма, потеря большого объёма плазмы крови (например, при обширных ожогах).

•  При снижении ОПСС развивается вазодилатационный коллапс. Это может произойти при тяжёлых инфекциях, интоксикациях, гипертермии, эндокринопатиях (при гипотиреоидных состояниях, надпочечниковой недостаточности), передозировке сосудорасширяющих ЛС, гипокапнии, глубокой гипоксии и ряде других состояний.

Факторы риска. На развитие коллапса в значительной мере оказывают влияние физические характеристики окружающей среды (низкая или высокая температура, уровень барометрического давления, влажности), состояние организма (наличие или отсутствие какой-либо болезни, патологического процесса, психоэмоциональный статус и др.).

ПАТОГЕНЕЗ И ПРОЯВЛЕНИЯ КОЛЛАПСА

Несмотря на сходство патогенеза и проявлений различных видов коллапса (см. раздел «Патогенез и проявления экстремальных состояний» выше), некоторые из них имеют существенные различия.Постгеморрагический коллапс. Инициальный патогенетический фактор – быстрое и значительное уменьшение ОЦК (гиповолемия). Возрастание в связи с этим тонуса сосудов не устраняет несоответствия их ёмкости существенно снизившемуся ОЦК. В результате развивается гипоперфузия органов и тканей. Это приводит к нарастающей вначале циркуляторной, а затем (с присоединением гемической и тканевой) – смешанной гипоксии.

Ортостатический коллапс. Инициальное звено патогенеза ортостатического коллапса (обморока) – системная вазодилатация в результате быстрого снижения тонуса стенок артериол, а также ёмкостных сосудов. Наблюдается при резком переходе тела в вертикальное положение из положения лёжа или сидя, особенно после длительной гиподинамии. При этом доминируют холинергические влияния на стенки сосудов (в связи с раздражением нейронов вестибулярных центров). Важный фактор риска – снижение реактивных свойств стенок резистивных сосудов к вазопрессорным веществам: катехоламинам, ангиотензину и другим.

МЕТОДЫ ЛЕЧЕНИЯ КОЛЛАПСА

Терапия коллапсов базируется на реализации этиотропного, патогенетического, саногенетического и симптоматического принципов. Этиотропное лечение направлено на прекращение действия экстремального фактора или снижение степени его повреждающего влияния: останавливают кровотечение, вводят антитоксины, антидоты, антимикробные ЛС.

Патогенетический принцип реализуется путём устранения или снижения степени последствий несоответствия ёмкости сосудистого русла и ОЦК. С этой целью пациентам вливают препараты крови, кровеили плазмозаменители, буферные растворы; вводят ЛС, повышающие тонус стенок резистивных и ёмкостных сосудов, активирующие функцию сердца и дыхательного центра; проводят оксигенотерапию; при наличии признаков надпочечниковой недостаточности используют кортикостероиды.

Саногенетическая терапия подразумевает стимуляцию механизмов адаптации: активацию гемопоэза, системы ИБН, детоксицирующей и других функций печени, экскреторной способности почек.Симптоматическое лечение включает мероприятия по устранению тягостных, неприятных и усугубляющих состояние пациента проявлений коллапса: болевого синдрома, чувства страха смерти, подавленности, тревоги и др. В зависимости от конкретной ситуации применяют антидепрессанты, нейролептики, седативные и болеутоляющие средства, психостимуляторы, транквилизаторы.

ШОК

Шок – общее, крайне тяжёлое экстремальное состояние. Возникает под действием сверхсильных, разрушительных факторов и характеризуется стадийным прогрессирующим расстройством жизнедеятельности организма вследствие нарушения функций жизненно важных систем.

Этиология шока

•  Основные причины

♦ Различные варианты травм (механическое повреждение – разрушение, разрывы, отрывы, раздавливание тканей; обширные ожоги, воздействие электрического тока и др.).

♦ Массивная кровопотеря.

♦ Переливание большого объёма несовместимой крови.

♦ Анафилактические реакции.

♦ Острая недостаточность жизненно важных органов (сердца, почек, печени, головного мозга).

♦ Экзо- и эндогенные интоксикации.

•  Факторы риска

♦ Переохлаждение и перегревание организма.

♦ Длительное голодание.

♦ Нервное или психическое перевозбуждение.

♦ Значительная физическая усталость.

♦ Тяжёлые хронические заболевания.

♦ Нарушения реактивности организма.

Виды шока

Единой классификации шока нет. В качестве критерия для дифференцировки шоковых состояний служат, главным образом, их причина и тяжесть течения.

•  В зависимости от причины различают шок травматический (раневой), геморрагический, ожоговый, посттрансфузионный, аллергический (анафилактический), электрический, кардиогенный, токсический, психогенный (психический) и др.

•  В зависимости от тяжести течения выделяют: шок I степени (лёг- кий), шок II степени (средней тяжести), шок III степени (тяжё- лый).

Общий патогенез и проявления шока

Независимо от причины и тяжести клинических проявлений, различают две последовательных стадии шока.

•  Сначала возникает активация специфических и неспецифических адаптивных реакций. Эту стадию ранее называли стадией генерализованного возбуждения, или эректильной. В последние годы её называют стадией адаптации, или компенсации.

•  Если процессы адаптации недостаточны, развивается вторая стадия шока. Ранее её называли стадией общего торможения или торпид-

ной (от лат. torpidus – вялый). В настоящее время её называют стадией дезадаптации, или декомпенсации.

СТАДИЯ АДАПТАЦИИ

Стадия адаптации (компенсации, непрогрессирующая, эректильная) характеризуется мобилизацией и максимальным напряжением адаптивных механизмов организма, перераспределением пластических и энергетических ресурсов в пользу жизненно важных органов, что сопровождается значительными изменениями их функций. На стадии компенсации основное значение имеют нейроэндокринное, гемодинамическое, гипоксическое, токсемическое и метаболическое звенья патогенеза.

Нейроэндокринное звено

Вследствие гиперафферентации значительно усиливается выброс в кровь гормонов симпатикоадреналовой и гипоталамо-гипофизарно-надпочечниковой систем, а также щитовидной, поджелудочной и других эндокринных желёз. Эффекты:

•  Гиперфункция ССС и дыхательной системы, почек, печени, других органов и тканей. Это проявляется гипертензивными реакциями, тахикардией, учащением и углублением дыхания, перераспределением кровотока в разных регионах сосудистого русла, выбросом крови из депо.

•  По мере нарастания степени повреждения эти реакции принимают избыточный, неадекватный и некоординированный характер, что в значительной мере снижает их эффективность. Это и определяет в значительной мере тяжёлое или даже необратимое самоусугубляющееся течение шоковых состояний.

•  Сознание при шоке не утрачивается. В эту стадию обычно возникает нервное, психическое и двигательное возбуждение, проявляющееся излишней суетливостью, ажитированной речью, гиперрефлексией.

Гемодинамическое звено

Нарушение гемодинамики при шоке является результатом расстройств деятельности сердца, изменения тонуса резистивных и ёмкостных сосудов, уменьшения ОЦК, изменения вязкости крови, а также активности факторов системы гемостаза.

•  Расстройства сердечной деятельности.

♦ Причины: прямое действие на сердце экстремального фактора; кардиотоксический эффект высокого уровня в крови катехоламинов, гормонов коры надпочечников и щитовидной железы.

♦ Проявления: значительная тахикардия, различные нарушения ритма сердца, снижение ударного и сердечного выбросов, нару-

шения центральной, органно-тканевой и микрогемоциркуляции, системный застой венозной крови, замедление тока крови в сосудах микроциркуляторного русла.

•  Изменение тонуса резистивных и ёмкостных сосудов.

♦ Вначале тонус сосудов, как правило, возрастает вследствие гиперкатехоламинемии. В течение какого-то времени повышенный тонус стенок резистивных сосудов (артериол) способствует поддержанию системного АД, а ёмкостных сосудов (венул) – адекватного притока крови к сердцу.

♦ Позднее накапливается избыточное количество БАВ, снижающих тонус стенок сосудов (таких как аденозин, биогенные амины, гистамин, NO, ПгЕ, I2).

•  Перераспределение кровотока. Происходит увеличение кровотока в артериях сердца и мозга при одновременном его уменьшении в сосудах кожи, мышц, органов брюшной полости, почек. Этот феномен получил название централизации кровотока.

♦ Причины феномена: неравномерное содержание адренорецепторов и рецепторов к другим биологически активным веществам в разных сосудистых регионах (наибольшее их число выявлено в стенках сосудов мышц, кожи, органов брюшной полости, почек и значительно меньшее – в сосудах сердца и головного мозга), образование в ткани миокарда и мозга большого количества сосудорасширяющих БАВ.

♦ Значение феномена: адаптивное (кровоснабжение сердца и мозга в таких условиях способствует поддержанию жизнедеятельности организма в целом); патогенное (нарушение функций гипоперфузируемых органов, изменение реологических свойств крови в сосудах вследствие стаза и выхода жидкой части крови в ткани).

•  Уменьшение ОЦК, изменение вязкости крови и активности факторов системы гемостаза выявляются уже на раннем этапе шоковых состояний.

Гипоксическое звено

Гипоксическое звено – один из главных и закономерных компонентов патогенеза шока.

•  Причины. Первоначально гипоксия обычно является следствием расстройств гемодинамики и носит циркуляторный характер. По мере усугубления состояния гипоксия становится смешанной. Это является результатом прогрессирующих расстройств дыхания, изменений в системе крови и тканевого метаболизма.

•  Последствия. Снижение эффективности биологического окисления потенцирует нарушение функций тканей и органов, а также – обмена веществ в них. Накопление избытка активных форм кислорода является одной из причин недостаточности системы антиоксидантной защиты тканей и активации перекисных реакций.

Токсемическое звено

•  Причины:

♦ Сам экстремальный фактор может являться токсином (например, при токсическом, токсико-инфекционном шоке).

♦ Повреждение экстремальным фактором клеток и высвобождение из них избытка БАВ, продуктов нормального и нарушенного метаболизма, ионов, денатурированных соединений.

♦ Нарушение инактивации или экскреции токсичных соединений печенью, почками, другими органами и тканями.

•  Последствия: нарастание интоксикации потенцирует гипоксию, нарушения гемодинамики и полиорганную недостаточность.

Метаболическое звено

•  Причины: чрезмерное усиление нервных и гуморальных влияний на ткани и органы, расстройство гемодинамики в тканях и органах, гипоксия, токсемия.

•  Последствия. В целом изменения метаболизма характеризуются преобладанием процессов катаболизма: протеолиза, липолиза и СПОЛ, гликогенолиза и других. Содержание макроэргических соединений уменьшается, а уровень ионов и жидкости в тканях возрастает.

При неэффективности адаптивных механизмов и усугублении описанного выше комплекса расстройств развивается стадия декомпенсации шока.

СТАДИЯ ДЕКОМПЕНСАЦИИ

На стадии компенсации основное значение имеют те же звенья патогенеза, однако изменения в них носят неадаптивный, патогенный характер.

Нейроэндокринное звено. Сознание на стадии декомпенсации также не утрачивается, но отмечаются признаки заторможенности и спутанности сознания, развивается гипорефлексия. Эффекты нервных и гормональных влияний прогрессирующе уменьшаются вплоть до отсутствия.

Гемодинамическое звено

На стадии декомпенсации гемодинамическое звено патогенеза шока приобретает ключевое значение.

•  Причины:

♦ Прогрессирующее нарушение функции сердца и развитие сердечной недостаточности.

♦ Тотальное снижение тонуса резистивных и ёмкостных сосудов. Это устраняет адаптивный феномен централизации кровообращения. Снижение систолического АД до 60-40 мм рт.ст. чревато прекращением процесса фильтрации в клубочках почек и развитием острой почечной недостаточности.

♦ Дальнейшее снижение ОЦК и повышение её вязкости в связи с выходом жидкой части крови в межклеточное пространство.

• Проявления: тотальная гипоперфузия органов и тканей, существенное расстройство микроциркуляции, капилляро-трофическая недостаточность.

Система гемостаза. Изменения в системе гемостаза заключаются в развитии дисбаланса концентрации или активности факторов свёр- тывающей, противосвёртывающей и фибринолитической систем. Последствия: развитие ДВС-синдрома, ишемии и некроза тканей, геморрагий в них.

Гипоксическое звено. Развивается выраженная гипоксия смешанного типа и некомпенсированный ацидоз вследствие системных расстройств гемодинамики, гиповентиляции лёгких, уменьшения ОЦК, почечной недостаточности, расстройства обмена веществ. Токсемическое звено характеризуется увеличением содержания в крови и других биологических жидкостях продуктов нормального и нарушенного метаболизма; накоплением в крови соединений, высвобождающихся из повреждённых и разрушенных клеток (ферментов, денатурированных белков, ионов, различных включений); БАВ и других. Указанные вещества значительно усугубляют повреждение органов. Метаболическое звеношока на стадии декомпенсации проявляется доминированием процессов катаболизма белков, липидов, углеводов, минимизацией пластических процессов в клетках, гипергидратацией клеток, накоплением в биологических жидкостях недоокисленных веществ, увеличением в тканях уровня продуктов липопероксидации. Клеточное звено патогенеза шока на стадии декомпенсации характеризуется нарастающим подавлением активности ферментов и жизнедеятельности клеток, повреждением и разрушением клеточных мембран, нарушениями межклеточных взаимодействий.

Особенности патогенеза некоторых видов шока

Особенности различных видов шока определяются главным образом их причиной и характером реагирования на неё организма.

ОЖОГОВЫЙ ШОК

Причина: обширные глубокие ожоги кожи (как правило, более 25% её поверхности). У детей и людей пожилого возраста развитие шока возникает при ожоге уже около 10% поверхности кожи.

Основные особенности ожогового шока

♦ Сильная болевая афферентация от зоны поражения.

♦ Выраженная токсемия.

♦ Обычно длительная адаптивная стадия, тяжёлое течение торпидной.

♦ Частое инфицирование ожоговой поверхности и развитие сепсиса.

♦ Значительная дегидратация вследствие испарения с ожоговой поверхности.

♦ Частое развитие «шоковых почек».

ТРАВМАТИЧЕСКИЙ ШОК

Причина травматического шока: массированное повреждение органов, мягких тканей и костей под влиянием механических факторов (например, разрыв или раздавливание тканей и органов, отрыв конечностей, перелом костей и др.).

Основное звено в патогенезе травматического шока – значительная болевая афферентация. Как правило, механическая травма сочетается с большей или меньшей степенью кровопотери и инфицированием раны.

Методы лечения шока

Чем раньше после воздействия экстремального фактора начато лечение шоковых состояний, тем выше его эффективность и благоприятнее прогноз.

Этиотропное лечение проводят путём устранения или ослабления действия шокогенного фактора, предотвращения или снижения выраженности избыточной патогенной афферентации от болевых и других экстеро-, интеро- и проприорецепторов.

Патогенетическое лечение направлено на разрыв ключевых звеньев механизма развития шока, а также на стимуляцию адаптивных реакций и пр